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Preface to the 
Third Edition

This is the third edition of Modern Optical Engineering. The first edition
appeared in 1966; the second in 1990. Strictly by coincidence, this third
edition will appear early in the third millennium. The changes from the
second edition are rather modest, although quite numerous, evolution-
ary rather than revolutionary, as befits a book dealing with a science
such as optics, which is well established and with a long history.

As a historical note, when I enrolled in the Institute of Optics at the
University of Rochester, I had an obligatory interview with the Dean,
who carefully explained that optics was a very specialized and difficult
course of study and that in the whole country there were less than a
dozen potential employers for a graduate optical engineer. Despite the
Dean’s gloom-and-doom prognostication, the future turned out amaz-
ingly well, and I have thoroughly enjoyed the practice of optical engi-
neering and the people associated with it for over five and a half decades.

Interestingly enough, in that period, the basics of optical engineering
have changed very little, although the applications of optics have
undergone rapid, extensive, dynamic, and fascinating changes.
However, Snell’s law has not been repealed (although perhaps amend-
ed), and one who wishes to “practice optics” is still well advised to
acquire a solid grounding in geometrical optics and optical engineering.

Which brings us to the third edition. It is very flattering to an author
to be asked by his publisher to prepare a new edition; it is especially so
when the new edition is the third. But then the question that needs to
be answered is, “What’s new and different?” The claim in the Preface of
the Second Edition to some 1200 changes was met with, if not skepti-
cism, then a slightly raised eyebrow on the part of one reviewer (a good
friend and distinguished colleague). So you may be horrified to learn
that I have again counted (and categorized) the changes. This time,
depending on how you wish to classify them, the changes total 2104,
plus or minus a few.
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The basics of optical engineering are, as one might expect, little
changed since 1990. I have yielded to common usage in replacing the
symbol N for index of refraction with n (and I fondly hope that I have
caught all the occurences of N). I also have changed the raytrace coor-
dinates so that the optical axis is the z axis instead of the x axis.
Believe it or not, these two items produced some 900 (admittedly
minor) changes. While many of the other changes add new material, a
large number are intended to clarify the existing text by the addition
or modification of a word or two.

Here are some of the more significant changes and additions:

There is a new table of wavelength units and a new application of
the invariant to afocal systems. The calculation of the entrance pupil
location from the stop surface is detailed, and the Scheimpflug con-
dition treatment is expanded to cover the cause and elimination of
keystone distortion. Practical hints include blackening finishes 
as well as a list of no-nos (at least to the optics shop). The relation-
ship between object-side and image-side numerical aperture (or f-
number) and the magnification is spelled out, as are the diffraction
effects of gaussian beams and the often-overlooked differences
between the focus and the waist of the beam. A section on the
Fourier transform lens and spatial filtering has been added. A few
practical hints on the procurement of plastic optics may save the
reader a great deal of agony. Hot and cold mirrors are described.

A new, simple, and easily understood derivation of the conservation
of brightness and radiance has been added. New or expanded tables of
brightness, illumination, and reflectance have been included, and
the searchlight figure is improved. New equations for telescope (or
afocal) component powers, eye relief, and eyepiece focus shift have
been added, as well as a discussion of rod-lens endoscopes. A new
deviation wedge device, a description of laser diode collimators,
additional zoom-lens material, and a simplified discussion of certain
diffractive surface effects have been added. Johnson’s law of recog-
nition and resolution is described. The modulation transfer function
as affected by coherent and partially coherent illumination systems
is clearly explained.

Specific equations for three-element apochromats are presented. The
use of diffractive surfaces in lens design is illustrated by a design
example of a hybrid refractive-diffractive achromatic singlet and an
apochromatic doublet. Expressions for the efficiency and manufac-
turability of diffraction surfaces are given, including practical con-
siderations with respect to shop/fabrication practices. Aberration
effects in an eyepiece and eyepiece diopter adjustment equations are
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presented. Flat-field microscope objectives are described. An entirely
new Chapter 14 has been added with 44 additional lens designs and
prescriptions to supplement and expand on the lens design material
in Chapters 12 and 13.

Computer-controlled surfacing and magnetorheologic polishing are
discussed. Single-point diamond turning of aspherics and the use of
aspheric corrector plates are described.

For those still wondering about the 2104 changes claimed earlier, here
is a breakdown by type:

1. Change N to n and x to z. 900

Add, delete, or change:

2. A few words. 645

3. More than a few words. 120

4. Add a full sentence or an equation. 183

5. Add a new paragraph. 126

6. Add a new figure. 53

7. Add a new table. 4

8. Add a new chapter. 1

9. Add new references. 73

So there it is. The newer types of optics, such as diffractive, holo-
graphic, aspheric, gradient index, binary, etc., produce images and
are used and incorporated into optical systems in much the same way
as are the classical lenses and mirrors, although perhaps more pow-
erfully and flexibly. Once one achieves a reasonable level of under-
standing (which need not be at an overwhelming level), these new
devices can be incorporated readily into one’s optical system design.
It is not unusual to find that the basics of the design of optical sys-
tems is actually little changed by these new, exciting, and tremen-
dously useful developments.

In conclusion, I hope that you, the reader, will enjoy the practice of
optics as much as I have and that your practice proves as satisfying
to you as mine has to me. I also hope that this third edition of Modern
Optical Engineering is as useful to you as it has been to me. I wish
you well.

Warren J. Smith
Vista, California
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Preface to the 
Second Edition

This book is directed to the practicing engineer or scientist who
requires effective practical technical information on optical systems
and their design. The increase in the utilization of optical devices in
such fields as alignment, metrology, automation, communication, and
space and defense applications has brought about a need for technical
people conversant with the optical field. Thus, many individuals
whose basic training is in electronics, mechanics, physics, or mathe-
matics find themselves in positions requiring a relatively advanced
competence in optical engineering. It is the author’s hope that this vol-
ume will enable them to undertake their practice of optics soundly and
with confidence. The book is based on the experiences of some forty-
odd years in the actual practice of the design of optical systems, includ-
ing commercial, experimental, and space and defense projects. I have
tried to include and clearly explain the techniques which I found espe-
cially useful in my own work.

Although the reader is presumed to be at least familiar with the
optical material contained in a first-year physics course, the book
begins with a general orientation chapter dealing with electromag-
netic waves, Snell’s law, interference, diffraction, and the photoelectric
effect. The second chapter goes quite deeply into image formation at the
first-order (gaussian) level, and includes several numerical examples.
The departures from first-order imagery represented by the aberra-
tions are discussed in the third chapter. Prisms and mirrors are covered
in both general and specific terms, in such a way that the reader can
independently proceed beyond the standard systems. A chapter on the
eye (as the basic “detector” involved in the vast majority of optical sys-
tems) follows.

The chapter on stops and apertures covers the usual aperture, field,
and glare stops and integrates the diffraction and resolution effects of
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apertures. The seventh chapter discusses optical materials and optical
coatings, including the computation of the reflectance and transmit-
tance of interference films.

The chapter on radiation and photometry introduces the basic
radiation concepts which are so necessary to a complete understand-
ing of the relationship between the optics of a larger system and its
performance. Chapter 9 discusses the basic tools of optics, the devices
such as telescopes, microscopes, radiometers, variable-focus lenses, and
the like, from which complete systems and instruments are designed.

Chapters 10 through 13 are fairly advanced and contain sufficient
material to permit the reader to undertake the complete design of an
optical system. The chapter on optical computation covers ray-tracing
through spherical and aspheric surfaces and includes techniques for
determining the third-order aberrations. Image evaluation is dis-
cussed at length in Chapter 11, from both a geometrical and physical
optics basis; the concept of the optical transfer function is introduced
and computing techniques are demonstrated. Design procedures, both
specific and generalized, are presented, and the individual design
characteristics of a wide range of optical systems are discussed.
Chapter 13 also includes a number of equations and charts which are
of great value in preliminary engineering and proposal work and
which permit a very rapid estimation of performance level for many
basic optical systems.

The final chapter of the book includes discussions of optical manufac-
turing processes, the specification, and tolerancing of optics for the shop,
as well as brief discussions of optical-mechanics and laboratory practice.

The general approach throughout has been to emphasize the appli-
cation of basic optical principles to practice. Many numerical examples
are included for the purpose of guiding the reader through typical
engineering problems. Most chapters are followed by a set of exercises
(and answers), designed to provide the reader with a close approxima-
tion to practical experience. The mathematical level required has been
deliberately kept low; derivations are limited and are designed pri-
marily to demonstrate either the technique of manipulation of optical
quantities or the application of the relationships previously presented.
The notation used is basically that of Conrady with modifications,
since this is probably the most widely known and used system.

This second edition of Modern Optical Engineering contains more
than 1200 changes from the first edition. Some are major, some are
quite subtle; some are additions, some are deletions. Many of the
changes stem from the additional quarter-century of optical system
design I have experienced since the original edition was undertaken. I
am also indebted to the several thousand students to whom I have
taught optics from this text; their questions and frequent puzzled

xvi Preface to the Second Edition



expressions have inspired many of the corrections and rephrased expo-
sitions. Yet a third source has been the ongoing change in optical tech-
nology. Since it has proven quite difficult to amend Snell’s law, the
changes in the optics of optical systems tend to be modest, also few and
far between, but they do occur.

It is with some regret that I have changed the sign convention for
the ray slope. There were many advantages to the historical “optical”
sign convention, but on balance they seemed to be outweighed by the
confusion engendered in newcomers to the field by the contradiction
between the “optical” convention and standard mathematical usage.

The first edition of Modern Optical Engineering was written both as
an instruction manual for newcomers to optical engineering and also
as a reference work for those (myself included) already experienced in
the field. Since the style, format, and organization of the first edition
have been well received, the second edition follows them closely. A for-
mer student described it as “clear and easy to understand, brief and to
the point, correct, and above all, useful.” It is my hope that this edition
has retained, and added to, those qualities.

I wish to acknowledge and express my gratitude to those who are
truly responsible for the creation of this book: to my family, for their
forbearance; to my teachers, for their knowledge and wisdom; to my
colleagues, for their help, guidance, and shared experiences; to my stu-
dents, for their enthusiasm and curiosity; and lastly, to many very spe-
cial individuals too numerous to name, with the fond hope that you
recognize yourselves here. PBGT.

Warren J. Smith
Vista, California
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1

General Principles

1.1 The Electromagnetic Spectrum

This book deals with certain phenomena associated with a relatively
narrow slice of the electromagnetic spectrum. Optics is often defined
as being concerned with radiation visible to the human eye; however,
in view of the recent expansion of optical applications in the regions of
the spectrum on either side of the visible region, it seems not only pru-
dent, but necessary, to include certain aspects of the infrared and
ultraviolet regions in our discussions.

The known electromagnetic spectrum is diagramed in Fig. 1.1 and
ranges from cosmic rays to radio waves. All the electromagnetic radi-
ations transport energy and all have a common velocity in vacuum of
c � 2.998 � 1010 cm/s. In other respects, however, the nature of the
radiation varies widely, as might be expected from the tremendous
range of wavelengths represented. At the short end of the spectrum we
find gamma radiation with wavelengths extending below a billionth of
a micron (one micron or micrometer � 1 �m � 10�6 m) and at the long
end, radio waves with wavelengths measurable in miles. At the short
end of the spectrum, electromagnetic radiation tends to be quite parti-
clelike in its behavior, whereas toward the long wavelength end the
behavior is mostly wavelike. Since the optical portion of the spectrum
occupies an intermediate position, it is not surprising that optical radi-
ation exhibits both wave and particle behavior.

The visible portion of this spectrum (Fig. 1.2) takes up less than one
octave, ranging from violet light with a wavelength of 0.4 �m to red
light with a wavelength of 0.76 �m. Beyond the red end of the spec-
trum lies the infrared region, which blends into the microwave region
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at a wavelength of about one millimeter. The ultraviolet region
extends from the lower end of the visible spectrum to a wavelength of
about 0.01 �m at the beginning of the x-ray region. The wavelengths
associated with the colors seen by the eye are indicated in Fig. 1.2.

The ordinary units of wavelength measure in the optical region are
the angstrom (Å); the millimicron (m�), or nanometer (nm); and the
micrometer (�m), or micron (�). One micron is a millionth of a meter, a
millimicron is a thousandth of a micron, and an angstrom is one ten-
thousandth of a micron (see Table 1.1). Thus, 1.0 Å � 0.1 nm � 10�4 �m.
The frequency equals the velocity c divided by the wavelength, and the
wavenumber is the reciprocal of the wavelength, with the usual dimen-
sion of cm�1.

1.2 Light Wave Propagation

If we consider light waves radiating from a point source in a vacuum as
shown in Fig. 1.3, it is apparent that at a given instant each wave front
is spherical in shape, with the curvature (reciprocal of the radius)
decreasing as the wave front travels away from the point source. At a
sufficient distance from the source the radius of the wave front may be
regarded as infinite. Such a wave front is called a plane wave.

2 Chapter One

Figure 1.1 The electromagnetic spectrum.



The distance between successive waves is of course the wavelength
of the radiation. The velocity of propagation of light waves in vacuum
is approximately 3 � 1010 cm/s. In other media the velocity is less than
in vacuum. In ordinary glass, for example, the velocity is about two-
thirds of the velocity in free space. The ratio of the velocity in vacuum
to the velocity in a medium is called the index of refraction of that
medium, denoted by the letter n.

Index of refraction n � (1.1)

Both wavelength and velocity are reduced by a factor of the index; the
frequency remains constant.

velocity in vacuum
���
velocity in medium

General Principles 3

Figure 1.2 The “optical” portion
of the electromagnetic spectrum.

TABLE 1.1 Commonly Used Wavelength Units

Centimeter � 10�2 meter

Millimeter � 10�3 meter

Micrometer � 10�6 meter � 10�3 millimeter

Micron � 10�6 meter � 10�3 millimeter

Millimicron � 10�3 micron � 1.0 nanometer
� 10�6 millimeter
� 10�9 meter

Nanometer � 10�9 meter � 1.0 millimicron

Angstrom � 10�10 meter � 0.1 nanometer



Ordinary air has an index of refraction of about 1.0003, and since
almost all optical work (including measurement of the index of refrac-
tion) is carried out in a normal atmosphere, it is a highly convenient
convention to express the index of a material relative to that of air
(rather than vacuum), which is then assumed to have an index of
exactly 1.0.

The actual index of refraction for air at 15°C is given by

(n�1) �108 � 8342.1 � �

where � � 1/	 (	 � wavelength, in �m). At other temperatures the
index may be calculated from

(nt�1) �

The change in index with pressure is 0.0003 per 15 lb/in2, or
0.00002/psi.

If we trace the path of a hypothetical point on the surface of a wave
front as it moves through space, we see that the point progresses as a
straight line. The path of the point is thus what is called a ray of light.
Such a light ray is an extremely convenient fiction, of great utility in
understanding and analyzing the action of optical systems, and we
shall devote the greater portion of this volume to the study of light
rays. Note that the ray is normal to the wave front, and vice versa.

The preceding discussion of wave fronts has assumed that the light
waves were in a vacuum, and of course that the vacuum was isotropic,
i.e., of uniform index in all directions. Several optical crystals are
anisotropic; in such media wave fronts as sketched in Fig. 1.3 are not
spherical. The waves travel at different velocities in different direc-
tions, and thus at a given instant a wave in one direction will be fur-
ther from the source than will a wave traveling in a direction for which
the media has a larger index of refraction.

1.0549 (n15° � 1)
���

(1 � 0.00366t)

15,996
��
(38.9��2)

2,406,030
��
(130��2)
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Figure 1.3 Light waves radiat-
ing from a point source in an
isotropic medium take a spheri-
cal form; the radius of curvature
of the wave front is equal to the
distance from the point source.
The path of a point on the wave
front is called a light ray, and in
an isotropic medium is a
straight line. Note also that the
ray is normal to the wave front.



Although most optical materials may be assumed to be isotropic,
with a completely homogeneous index of refraction, there are some sig-
nificant exceptions. The earth’s atmosphere at any given elevation is
quite uniform in index, but when considered over a large range of alti-
tudes, the index varies from about 1.0003 at sea level to 1.0 at extreme
altitudes. Therefore, light rays passing through the atmosphere do not
travel in exactly straight lines; they are refracted to curve toward the
earth, i.e., toward the higher index. Gradient index optical glasses are
deliberately fabricated to bend light rays in controlled curved paths. We
shall assume homogeneous media unless specifically stated otherwise.

1.3 Snell’s Law of Refraction

Let us now consider a plane wave front incident upon a plane surface
separating two media, as shown in Fig. 1.4. The light is progressing
from the top of the figure downward and approaches the boundary sur-
face at an angle. The parallel lines represent the positions of a wave
front at regular intervals of time. The index of the upper medium we
shall call n1 and that of the lower n2. From Eq. 1.1, we find that the
velocity in the upper medium is given by v1 � c/n1 (where c is the veloc-
ity in vacuum ≈ 3 � 1010 cm/s) and in the lower by v2 � c/n2. Thus, the
velocity in the upper medium is n2/n1 times the velocity in the lower,
and the distance which the wave front travels in a given interval of time
in the upper medium will also be n2/n1 times that in the lower. In Fig.
1.4 the index of the lower medium is assumed to be larger so that the
velocity in the lower medium is less than that in the upper medium.

At time t0 our wave front intersects the boundary at point A; at time
t1 � t0 � 
t it intersects the boundary at B. During this time it has
moved a distance

d1 � v1 
t � 
t (1.2a)

in the upper medium, and a distance

c
�
n1
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Figure 1.4 A plane wave front
passing through the boundary
between two media of differing
indices of refraction (n2 � n1).



d2 � v2 
t � 
t (1.2b)

in the lower medium.
In Fig. 1.5 we have added a ray to the wave diagram; this ray is the

path of the point on the wave front which passes through point B on
the surface and is normal to the wave front. If the lines represent the
positions of the wave at equal intervals of time, AB and BC, the dis-
tances between intersections, must be equal. The angle between the
wave front and the surface (I1 or I2) is equal to the angle between the
ray (which is normal to the wave) and the normal to the surface XX′.
Thus we have from Fig. 1.5

AB � � BC �

and if we substitute the values of d1 and d2 from Eq. 1.2, we get

�

which, after canceling and rearranging, yields

n1 sin I1 � n2 sin I2 (1.3)

This expression is the basic relationship by which the passage of light
rays is traced through optical systems. It is called Snell’s law after one
of its discoverers.

Since Snell’s law relates the sines of the angles between a light ray
and the normal to the surface, it is readily applicable to surfaces other
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t
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than the plane which we used in the example above; the path of a light
ray may be calculated through any surface for which we can determine
the point of intersection of the ray and the normal to the surface at that
point.

The angle I1 between the incident ray and surface normal is cus-
tomarily referred to as the angle of incidence; the angle I2 is called the
angle of refraction.

For all optical media the index of refraction varies with the wave-
length of light. In general the index is higher for short wavelengths
than for long wavelengths. In the preceding discussion it has been
assumed that the light incident on the refracting surface was mono-
chromatic, i.e., composed of only one wavelength of light. Figure 1.6
shows a ray of white light broken into its various component wave-
lengths by refraction at a surface. Notice that the blue light ray is
bent, or refracted, through a greater angle than is the ray of red light.
This is because n2 for blue light is larger than n2 for red. Since n2 sin
I2 � n1 sin I1 � a constant in this case, it is apparent that if n2 is larg-
er for blue light than red, then I2 must be smaller for blue than red.
This variation in index with wavelength is called dispersion; when
used as a differential it is written dn, otherwise dispersion is given by

n � n	1 � n	2, where 	1 and 	2 are the wavelengths of the two colors
of light for which the dispersion is given. Relative dispersion is given
by 
n/(n � 1) and, in effect, expresses the “spread” of the colors of light
as a fraction of the amount that light of a median wavelength is bent.

General Principles 7

Figure 1.6 Showing the disper-
sion of white light into its con-
stituent colors by refraction
(exaggerated for clarity).



All of the light incident upon a boundary surface is not transmitted
through the surface; some portion is reflected back into the incident
medium. A construction similar to that used in Fig. 1.5 can be used to
demonstrate that the angle between the surface normal and the
reflected ray (the angle of reflection) is equal to the angle of incidence,
and that the reflected ray is on the opposite side of the normal from
the incident ray (as is the refracted ray). Thus, for reflection, Snell’s
law takes on the form

Iincident � �Ireflected (1.4)

Figure 1.7 shows the relationship between a ray incident on a plane
surface and the reflected and refracted rays which result.

At this point it should be emphasized that the incident ray, the nor-
mal, the reflected ray, and the refracted ray all lie in a common plane,
called the plane of incidence, which in Fig. 1.7 is the plane of the paper.

1.4 The Action of Simple Lenses and
Prisms on Wave Fronts

In Fig. 1.8 a point source P is emitting light; as before, the arcs cen-
tered about P represent the successive positions of a wave front at reg-
ular intervals of time. The wave front is incident on a biconvex lens
consisting of two surfaces of rotation bounding a medium of (in this
instance) higher index of refraction than the medium in which the
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Figure 1.7 Relationship between
a ray incident on a plane surface
and the reflected and refracted
rays which result.



source is located. In each interval of time the wave front may be
assumed to travel a distance d1 in the medium of the source; it will
travel a lesser distance d2 in the medium of the lens. (As in the pre-
ceding discussion, these distances are related by n1d1 � n2d2.) At some
instant, the vertex of the wave front will just contact the vertex of the
lens surface at point A. In the succeeding interval, the portion of the
wave front inside the lens will move a distance d2, while the portion of
the same wave front still outside the lens will have moved d1. As the
wave front passes through the lens, this effect is repeated in reverse at
the second surface. It can be seen that the wave front has been retard-
ed by the medium of the lens and that this retardation has been
greater in the thicker central portion of the lens, causing the curvature
of the wave front to be reversed. At the left of the lens the light from P
was diverging, and to the right of the lens the light is now converging
in the general direction of point P′. If a screen or sheet of paper were
placed at P′, a concentration of light could be observed at this point.
The lens is said to have formed an image of P at P′. A lens of this type
is called a converging, or positive, lens. The object and image are said
to be conjugates.

Figure 1.8 diagrams the action of a convex lens—that is, a lens
which is thicker at its center than at its edges. A convex lens with an
index higher than that of the surrounding medium is a converging
lens, in that it will increase the convergence (or reduce the divergence)
of a wave front passing through it.

In Fig. 1.9 the action of a concave lens is sketched. In this case the
lens is thicker at the edge and thus retards the wave front more at the
edge than at the center and increases the divergence. After passing
through the lens, the wave front appears to have originated from the
neighborhood of point P′, which is the image of point P formed by the
lens. In this case, however, it would be futile to place a screen at P′ and
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Figure 1.8 The passage of a wave front through a converging, or posi-
tive, lens element.



expect to find a concentration of light; all that would be observed would
be the general illumination produced by the light emanating from P.
This type of image is called a virtual image to distinguish it from the
type of image diagramed in Fig. 1.8, which is called a real image. Thus
a virtual image may be observed directly or may serve as a source to be
reimaged by a subsequent lens system, but it cannot be produced on a
screen. The terms “real” and “virtual” also may be applied to rays,
where “virtual” applies to the extended part of a real ray.

The path of a ray of light through the lenses of Figs. 1.8 and 1.9 is the
path traced by a point on the wave front. In Fig. 1.10 several ray paths
have been drawn for the case of a converging lens. Note that the rays
originate at point P and proceed in straight lines (since the media
involved are isotropic) to the surface of the lens where they are refracted
according to Snell’s law (Eq. 1.3.) After refraction at the second surface
the rays converge at the image P′. (In practice the rays will converge
exactly at P′ only if the lens surfaces are suitably chosen surfaces of
rotation, usually nonspherical, whose axes are coincident and pass
through P.) This would lead one to expect that the concentration of light
at P′ would be a perfect point. However, the wave nature of light caus-
es it to be diffracted in passing through the limiting aperture of the lens
so that the image, even for a “perfect” lens, is spread out into a small
disc of light surrounded by faint rings as discussed in Chap. 6.

In Fig. 1.11 a wave front from a source so far distant that the cur-
vature of the wave front is negligible is shown approaching a prism,
which has two flat polished faces. As it passes through each face of the
prism, the light is refracted downward so that the direction of propa-
gation is deviated. The angle of deviation of the prism is the angle
between the incident ray and the emergent ray. Note that the wave
front remains plane as it passes through the prism.

If the radiation incident on the prism consisted of more than one
wavelength, the shorter-wavelength radiation would be slowed down
more by the medium composing the prism and thus deviated through
a greater angle. This is one of the methods used to separate different
wavelengths of light and is, of course, the basis for Isaac Newton’s clas-
sic demonstration of the spectrum.
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Figure 1.9 The passage of a
wave front through a diverging,
or negative, lens element.



1.5 Interference and Diffraction

If a stone is dropped into still water, a series of concentric ripples, or
waves, is generated and spreads outward over the surface of the water.
If two stones are dropped some distance apart, a careful observer will
notice that where the waves from the two sources meet there are areas
with waves twice as large as the original waves and also areas which
are almost free of waves. This is because the waves can reinforce or
cancel out the action of each other. Thus if the crests (or troughs) of
two waves arrive simultaneously at the same point, the crest (or
trough) generated is the sum of the two wave actions. However, if the
crest of one wave arrives at the same instant as the trough of the oth-
er, the result is a cancellation. A more spectacular display of wave rein-
forcement can often be seen along a sea wall where an ocean wave
which has struck the wall and been reflected back out to sea will com-
bine with the next incoming wave to produce an eruption where they
meet.

Similar phenomena occur when light waves are made to interfere. In
general, light from the same point on the source must be made to trav-
el two separate paths and then be recombined, in order to produce
optical interference. The familiar colors seen in soap bubbles or in oil
films on wet pavements are produced by interference.
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Figure 1.10 Showing the relationship between light rays and the wave front
in passing through a positive lens element.

Figure 1.11 The passage of a
plane wave front through a re-
fracting prism.



Young’s experiment, which is diagramed schematically in Fig. 1.12,
illustrates both diffraction and interference. Light from a source to the
left of the figure is caused to pass through a slit or pinhole s in an
opaque screen. According to Huygens’ principle, the propagation of a
wave front can be constructed by considering each point on the wave
front as a source of new spherical wavelets; the envelope of these new
wavelets indicates the new position of the wave front. Thus s may be
considered as the center of a new spherical or cylindrical wave
(depending on whether s is a pinhole or a slit), provided that the size
of s is sufficiently small. These diffracted wave fronts from s travel to
a second opaque screen which has two slits (or pinholes), A and B, from
which new wave fronts originate. The wave fronts again spread out by
diffraction and fall on an observing screen some distance away.

Now, considering a specific point P on the screen, if the wave fronts
arrive simultaneously (or in phase), they will reinforce each other and
P will be illuminated. However, if the distances AP and BP are such
that the waves arrive exactly out of phase, destructive interference
will occur and P will be dark.

If we assume that s, A, and B are so arranged that a wave front from
s arrives simultaneously at A and B (that is, distance sA exactly equals
distance sB), then new wavelets will start out simultaneously from A
and B toward the screen. Now if distance AP exactly equals distance
BP, or if AP differs from BP by exactly an integral number of wave-
lengths, the wave fronts will arrive at P in phase and will reinforce. If
AP and BP differ by one-half wavelength, then the wave actions from
the two sources will cancel each other.

If the illuminating source is monochromatic, i.e., emits but a single
wavelength of light, the result will be a series of alternating light and
dark bands of gradually changing intensity on the screen (assuming
that s, A, and B are slits), and by careful measurement of the geome-
try of the slits and the separation of the bands, the wavelength of the
radiation may be computed. (The distance AB should be less than a
millimeter and the distance from the slits to the screen should be to
the order of a meter to conduct this experiment.)
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Figure 1.12 Young’s diffraction
experiment.



With reference to Fig. 1.13, it can be seen that, to a first approxi-
mation, the path difference between AP and BP, which we shall repre-
sent by 
, is given by


 �

Rearranging this expression, we get

OP � (1.5)

Now as Fig. 1.13 is drawn, it is obvious that the optical paths AO and
BO are identical, so the waves will reinforce at O and produce a bright
band. If we set 
 in Eq. 1.5 equal to (plus or minus) one-half wave-
length, we shall then get the value of OP for the first dark band

OP (1st dark) � (1.6)

and if we assume that the distance from slits to screen D is one meter,
that the slit separation AB is one-tenth of a millimeter, and that the
illumination is red light of a wavelength of 0.64 �m, we get the fol-
lowing by substitution of these values in Eq. 1.6:

OP (1st dark) � � � � ±3.2 mm

Thus the first dark band occurs 3.2 mm above and below the axis.
Similarly the location of the next light band can be found at 6.4 mm by
setting 
 equal to one wavelength, and so on.

If blue light of wavelength 0.4 �m were used in the experiment, we
would find that the first dark band occurs at ±2 mm and the next
bright band at ±4 mm.

Now if the light source, instead of being monochromatic, is white
and consists of all wavelengths, it can be seen that each wavelength
will produce its own array of light and dark bands of its own particu-
lar spacing. Under these conditions the center of the screen will be
illuminated by all wavelengths and will be white. As we proceed from
the center, the first effect perceptible to the eye will be the dark band
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Figure 1.13 Geometry of Young’s
experiment.



for blue light which will occur at a point where the other wavelengths
are still illuminating the screen. Similarly, the dark band for red light
will occur where blue and other wavelengths are illuminating the
screen. Thus a series of colored bands is produced, starting with white
on axis and progressing through red, blue, green, orange, red, violet,
green, and violet, as the path difference increases. Further from the
axis, however, the various light and dark bands from all the visible
wavelengths become so “scrambled” that the band structures blend
together and disappear.

Newton’s rings are produced by the interference of the light reflected
from two surfaces which are close together. Figure 1.14 shows a beam
of parallel light incident on a pair of partially reflecting surfaces. At
some instant a wave front AA′ strikes the first surface at A. The point
on the wave front at A travels through the space between the two sur-
faces and strikes the second surface at B where it is partially reflected;
the reflected wave then travels upward to pass through the first sur-
face again at C. Meanwhile the point on the wave front at A′ has been
reflected at point C and the two paths recombine at this point.

Now if the waves arrive at C in phase, they will reinforce; if they
arrive one-half wavelength out of phase, they will cancel. In deter-
mining the phase relationship at C we must take into account the
index of the material through which the light has traveled and also the
phase change which occurs on reflection. This phase change occurs
when light traveling through a low-index medium is reflected from the
surface of a high-index medium; the phase is then abruptly changed by
180°, or one-half wavelength. No phase change occurs when the
indices are encountered in reverse order. Thus with the relative
indices as indicated in Fig. 1.14, there is a phase change at C for the
light following the A′CD path, but no phase change at B for the light
reflected from the lower surface.
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Figure 1.14



As in the case of Young’s experiment described above, the difference
between the optical paths ABC and A′C determines the phase rela-
tionship. Since the index of refraction is inversely related to the veloc-
ity of light to a medium, it is apparent that the length of time a wave
front takes to travel through a thickness d of a material of index n is
given by t � nd/c (where c ≈ 3 � 1010 cm/s � velocity of light in vacu-
um). The constant frequency of electromagnetic radiation is given by
c/	, so that the number of cycles which take place during the time 
t � nd/c is given by (c/	) � (nd/c) or nd/	. Thus, if the number of
cycles are the same, or differ by an integral number of cycles, over
the two paths of light traversed, the two beams of light will arrive at
the same phase.

In Fig. 1.14, the number of cycles for the path A′C is given by 12 �
n1A′C/	 (the one-half cycle is for the reflection phase change) and for
the path ABC by n2 ABC/	; if these numbers differ by an integer, the
waves will reinforce; if they differ by an integer plus one-half, they will
cancel.

The use of cycles in this type of application is inconvenient, and it is
customary to work in optical path length, which is the physical dis-
tance times the index and is a measure of the “travel time” for light. It
is obvious that if we consider the difference between the two path
lengths (arrived at by multiplying the above number of cycles by the
wavelength 	), exactly equivalent results are obtained when the dif-
ference is an integral number of wavelengths (for reinforcement) or an
integral number plus one-half wavelength (for cancellation). Thus, for
Fig. 1.14, the optical path difference (OPD) is given by

OPD � � n1 A′C�n2 ABC (1.7)

or

OPD � � 2n2t cos �

when the phase change is taken into account by the 	/2 term.
The term “Newton’s rings” usually refers to the ring pattern of

interference bands formed when two spherical surfaces are placed in
intimate contact. Figure 1.15 shows the convex surface of a lens rest-
ing on a plane surface. At the point of contact the difference in the
optical paths reflected from the upper and lower surfaces is patently
zero. The phase change on reflection from the lower surface causes
the beams to rejoin exactly out of phase, resulting in complete can-
cellation and the appearance of the central “Newton’s black spot.”
Some distance from the center the surfaces will be separated by
exactly one-quarter wavelength, and this path difference of one-half
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wavelength plus the phase change results in reinforcement, produc-
ing a bright ring. A little further from the center, the separation is
one-half wavelength, resulting in a dark ring, and so on.

Just as in Young’s experiment, the dark and bright bands for differ-
ent wavelengths will occur at different distances from the center,
resulting in colored circles near the point of contact which fade away
toward the edge.

A setup similar to Fig. 1.15 can obviously be used to measure the
wavelength of light if the radius of curvature of the lens is known and
a careful measurement of the diameters of the light and dark fringes
is made. The spacing between the surfaces is the sagittal height (SH)
of the radius, given by

SH � R� (R2 � Y2)1/2 (1.8)

where Y is the semidiameter of the ring measured. SH is equal to 	/4
for the first bright ring, 	/2 for the first dark ring, 3	/4 for the second
bright ring, and so on.

1.6 The Photoelectric Effect

In the preceding section, the discussion was based upon the assump-
tion that light was wavelike in nature. This assumption provides rea-
sonable explanations for reflection, refraction, interference,
diffraction, and dispersion, as well as other effects. The photoelectric
effect, however, seems to require for its explanation that light behave
as if it consisted of particles.

In brief, when short-wavelength light strikes a photoelectric mater-
ial, it can knock electrons out of the material. As stated, this effect
could be explained by the energy of the light waves exciting an elec-
tron sufficiently for it to break loose. However, when the nature of the
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incident radiation is modified, the characteristics of the emitted elec-
trons change in an unexpected way. As the intensity of the light is
increased, the number of electrons is increased just as might be
expected. If the wavelength is increased, however, the maximum veloc-
ity of the electrons emitted is reduced; if the wavelength is increased
beyond a certain value (this value is characteristic of the particular
photoelectric material used), the maximum velocity drops to zero and
no electrons are emitted, regardless of the intensity. The energy of a
photon in electron volts is given by 1.24 divided by the wavelength in
micrometers (microns).

Thus the energy necessary to break loose an electron is not stored
up until enough is available (as one would expect of the wavelike
behavior of light.) The situation here is more analogous to a shower of
particles, some of which have enough energy to break an electron
loose from the forces which bind it in place. Thus the particles of
shorter wavelength have sufficient energy to release an electron. If
the intensity of light is increased, the number of electrons released is
increased and their velocity remains unchanged. The longer-wave-
length particles do not have enough energy to knock electrons loose,
and when the intensity of the long-wavelength light is increased, the
effect is to increase the number of particles striking the surface, but
each particle is still insufficiently powerful to release an electron from
its bonds.

The apparent contradiction between the wave and particle behavior
of light can be resolved by assuming that every “particle” has a wave-
length associated with it which is inversely proportional to its momen-
tum. This has proved true experimentally for electrons, protons, ions,
atoms, and molecules; for example, an electron accelerated by an elec-
tric field of a few hundred volts has a wavelength of a few angstroms
(10�4 �m) associated with it. Reference to Fig. 1.1 indicates that this
wavelength is characteristic of x-rays, and indeed, electrons of this
wavelength are diffracted in the same patterns (by crystal lattices) as
are x-rays.
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Exercises

1 What is the index of a medium in which light has a velocity of 2 � 1010

cm/sc?

ANSWER: 1.5

2 What is the velocity of light in water, n � 1.33?

ANSWER: 2.26 � 1010 cm/s

3 A ray of light makes an angle of 30° with the normal to a surface. Find the
angle to the normal after refraction if:

(a) the ray is in air and the other material is glass, n � 1.5.
(b) the ray is in water and the other material is air.
(c) the ray is in water and the other material is glass.

ANSWER: (a) 19.5°, (b) 41.7°, (c) 26.3°

4 Two 6-in-diameter optical flats are contacted at one edge and separated by
a piece of paper (0.003-in thick) at the opposite edge. When illuminated by
light of 0.000020-in wavelength, how many fringes will be seen? Assume nor-
mal incidence.

ANSWER: 300 fringes

5 In Exercise 4, if the space between the flats is filled with water (n � 1.333),
how many fringes will be seen?

ANSWER: 400 fringes
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6 The convex surface of a lens is in contact with a flat plate of glass. If the
radius of the surface is 20 in, at what diameter will the first dark ring be
seen? The second? The third? What are the ring diameters if the radius is
200 in?

ANSWER: 0.040 in, 0.05657 in, 0.06928 in; 0.1265 in, 0.1789 in, 0.2191 in
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Image Formation 
(First-Order Options)

2.1 Introduction

The action of a lens on a wave front was briefly discussed in Sec. 1.4.
Figures 1.8 and 1.9 showed how a lens can modify a wave front to form
an image. A wave front is difficult to manipulate mathematically, and
for most purposes the concept of a light ray (which is the path
described by a point on a wave front) is much more convenient. In an
isotropic medium, light rays are straight lines normal to the wave
front, and the image of a point source is formed where the rays con-
verge (or appear to converge) to a concentration or focus. In a perfect
lens the rays converge to a point at the image.

For purposes of calculation, an extended object may be regarded as
an array of point sources. The location and size of the image formed by
a given optical system can be determined by locating the respective
images of the sources making up the object. This can be accomplished
by calculating the paths of a number of rays from each object point
through the optical system, applying Snell’s law (Eq. 1.3) at each ray-
surface intersection in turn. However, it is possible to locate optical
images with considerably less effort by means of simple equations
derived from the limiting case of the trigonometrically traced ray (as
the angles involved approach zero). These expressions yield image
positions and sizes which would be produced by a perfect optical 
system.

The term “first-order” refers to a power series expansion equation
which can be derived to define the intersection point of a ray in the
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image plane as a function of h, the position of the ray in the object
plane, and y, the position of the ray in the aperture of the optical sys-
tem. If the system is symmetrical about an axis (called the optical axis)
the power series expansion has only odd power terms (in which the
sum of the exponents of h and y add up to 1, 3, 5, etc.) The first-order
terms of this expansion effectively describe the position and size of the
image. (See Eqs. 3.1 and 3.2 for the equations.)

First-order (or gaussian) optics is often referred to as the optics of
perfect optical systems. The first-order equations can be derived by
reducing the exact trigonometrical expressions for ray paths to the
limit when the angles and ray heights involved approach zero. These
equations are completely accurate for an infinitesimal threadlike
region about the optical axis, known as the paraxial region. The value
of first-order expressions lies in the fact that a well-corrected optical
system will follow the first-order expressions almost exactly and also
that the first-order image positions and sizes provide a convenient ref-
erence from which to measure departures from perfection. In addition,
the paraxial expressions are linear and are much easier to use than
the trigonometrical equations.

We shall begin this chapter by considering the manner in which a
“perfect” optical system forms an image, and we will discuss the
expressions which allow the location and size of the image to be found
when the basic characteristics of the optical system are known. Then
we will take up the determination of these basic characteristics from
the constructional parameters of an optical system. Finally, methods
of image calculation by paraxial ray-tracing will be discussed.

2.2 Cardinal Points of an Optical System

A well-corrected optical system can be treated as a “black box” whose
characteristics are defined by its cardinal points, which are its first
and second focal points, its first and second principal points, and its
first and second nodal points. The focal points are those points at
which light rays (from an infinitely distant axial object point) parallel
to the optical axis* are brought to a common focus on the axis. If the
rays entering the system and those emerging from the system are
extended until they intersect, the points of intersection will define a
surface, usually referred to as the principal plane. In a well-corrected
optical system the principal surfaces are spheres, centered on the
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*The optical axis is a line through the centers of curvature of the surfaces which make
up the optical system. It is the common axis of rotation for an axially symmetrical opti-
cal system. Note that in real life, systems of more than two surfaces do not have a
unique axis, because three or more real points are rarely aligned on a straight line.



object and image. In the paraxial region where the distances from the
axis are infinitesimal, the surfaces can be treated as if they were
planes, hence the name, principal “planes.” The intersection of this
surface with the axis is the principal point. The “second” focal point
and the “second” principal point are those defined by rays approaching
the system from the left. The “first” points are those defined by rays
from the right.

The effective focal length (efl) of a system is the distance from the
principal point to the focal point. The back focal length (bfl), or back
focus, is the distance from the vertex of the last surface of the system
to the second focal point. The front focal length (ffl) is the distance from
the front surface to the first focal point. These are illustrated in 
Fig. 2.1.

The nodal points are two axial points such that a ray directed
toward the first nodal point appears (after passing through the sys-
tem) to emerge from the second nodal point parallel to its original
direction. The nodal points of an optical system are illustrated in 
Fig. 2.2 for an ordinary thick lens element. When an optical system is
bounded on both sides by air (as is true in the great majority of appli-
cations), the nodal points coincide with the principal points.

Unless otherwise indicated, we will assume that our optical systems
are axially symmetrical and are bounded by air. Equations 2.11
through 2.15 cover the case where the surrounding medium is not air.
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Figure 2.1 Illustrating the location of the focal points and principal points of
a generalized optical system.

Figure 2.2 A ray directed toward
the first nodal point (N1) of an
optical system emerges from the
system without angular devia-
tion and appears to come from
the second nodal point (N2).



The power of a lens or of an optical system is the reciprocal of its
effective focal length; power is usually symbolized by the Greek letter
phi (�). If the focal length is given in meters, the power (in recipro-
cal meters) is measured in diopters. The dimension of power is recip-
rocal distance, e.g., in�1, mm�1, cm�1, etc.

2.3 Image Position and Size

When the cardinal points of an optical system are known, the location
and size of the image formed by the optical system can be readily
determined. In Fig. 2.3, the focal points F1 and F2 and the principal
points P1 and P2 of an optical system are shown; the object which the
system is to image is shown as the arrow AO. Ray OB, parallel to 
the system axis, will pass through the second focal point F2; the refrac-
tion will appear to have occurred at the second principal plane. The
ray OF1C passing through the first focal point F1 will emerge from the
system parallel to the axis. (Since the path of light rays is reversible,
this is equivalent to starting a ray from the right at O′ parallel to the
axis; the ray is then refracted through F1 in accordance with the defi-
nition of the first focal point in Sec. 2.2.)

The intersection of these two rays at point O′ locates the image of
point O. A similar construction for other points on the object would
locate additional image points, which would lie along the indicated
arrow O′A′. A plane object normal to the axis is imaged as a plane, also
normal to the axis. See Sec. 2.14 for a tilted object.

A third ray could be constructed from O to the first nodal point; this
ray would appear to emerge from the second nodal point and would be
parallel to the entering ray. If the object and image are both in air, the
nodal points coincide with the principal points, and such a ray is
drawn from O to P1 and from P2 to O′, as indicated by the dashed line
in Fig. 2.3.

At this point in our discussion, it is necessary to adopt a convention
for the algebraic signs given to the various distances involved. The 
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following conventions are used by most workers in the field of optics.
There is nothing sacrosanct about these conventions, and many opti-
cal workers adopt their own, but the use of some consistent sign con-
vention is a practical necessity.

1. Heights above the optical axis are positive (e.g., OA and P2B).
Heights below the axis are negative (P1C and A′O′).

2. Distances measured to the left of a reference point are negative; to
the right, positive. Thus P1A is negative and P2A′ is positive.

3. The focal length of a converging lens is positive and the focal length
of a diverging lens is negative.

Image position

Figure 2.4 is identical to Fig. 2.3 except that the distances have been
given single letters; the heights of the object and image are labeled h
and h′, the focal lengths are f and f ′, the object and image distances
(from the principal planes) are s and s′, and the distances from focal
point to object and image are x and x′, respectively. According to our
sign convention, h f, f ′, x′, and s′ are positive as shown, and x, s, and h′
are negative. Note that the primed symbols refer to dimensions asso-
ciated with the image and the unprimed symbols to those associated
with the object.

From similar triangles we can write

� and � (2.1)

Setting the right-hand members of each equation equal and clearing
fractions, we get

ff ′ � � xx′ (2.2)

If we assume the optical system to be in air, then f will be equal to f ′ and

f ′
�
x ′

h
�
(�h′)

(�x)
�

f
h

�
(�h′)
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x′ � (2.3)

This is the “newtonian” form of the image equation and is very useful
for calculations where the locations of the focal points are known.

If we substitute x � s � f and x′ � s′ � f in Eq. 2.3, we can derive
another expression for the location of the image, the “gaussian” form.

f 2 � � xx′ � � (s � f) (s′ � f )

� � ss′ � sf � s′f � f 2

Canceling out the f 2 terms and dividing through by ss′f, we get

� � (2.4)

or alternatively,

s′ � or f � (2.5)

Image size

The lateral (or transverse) magnification of an optical system is given
by the ratio of image size to object size, h′/h. By rearranging Eq. 2.1,
we get for the magnification m,

m � � � (2.6)

Substituting x � s � f in this expression to get

m � �

and noting from Eq. 2.5 that f/(s�f ) is equal to s′/s, we find that

m � � (2.7a)

Other useful relations are

s′ � f (1 � m) (2.7b)

s � f � � 1� (2.7c)
1
�
m

s′
�
s

h′
�
h

f
�
(s � f )

h′
�
h

�x′
�

f
f

�
x

h′
�
h

ss′
�
(s � s′)

sf
�
(s � f )

1
�
s

1
�
f

1
�
s′

� f 2

�
x
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Note that Eqs. 2.3 through 2.7 assume that both object and image are
in air and also that Figs. 2.3 and 2.4 show a negative magnification.

Longitudinal magnification is the magnification along the optical
axis, i.e., the magnification of the longitudinal thickness of the object
or the magnification of a longitudinal motion along the axis. If s1 and
s2 denote the distances to the front and back edges of the object and s′1
and s′2 denote the distances to the corresponding edges of the image,
then the longitudinal magnification m� is, by definition,

m� �

Substituting Eq. 2.5 for the primed distances and manipulating, we
get

m� � � � m1 � m2 (2.8)

noting that m � s′/s. As (s′2 � s′1) and (s2 � s1) approach zero, then m1

approaches m2, and

m� � m2 (2.9)

This indicates that longitudinal magnification is ordinarily positive
and that object and image always move in the same direction.

Example A

Given an optical system with a positive focal length of 10 in, find the
position and size of the image formed of an object 5 in high which is
located 40 in to the left of the first focal point of the system.

Using the newtonian equation, we get, by substituting in Eq. 2.3,

x′ � � � � 2.5 in

Therefore the image is located 2.5 in to the right of the second focal
point. To find the image height, we use Eq. 2.6.

m � � � � �0.25

h′ � mh � (�0.25) (5) � �1.25 in

Thus if the base of the object were on the optical axis and the top of the
object 5 in above it, the base of the image would also lie on the axis and
the image of the top would lie 1.25 in below the axis.

The gaussian equations can be used for this calculation by noting
that the distance from the first principal plane to the object is given by
s � x � f � �40 � 10 � �50; then, by Eq. 2.4,

10
�
�40

f
�
x

h′
�
h

�102

�
�40

� f 2

�
x

s′2
�
s2

s′1
�
s1

s′2 � s′1
�
s2 � s1
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� � � � � 0.1 � 0.02 � 0.08

s′ � � 12.5 in

and the image is found to lie 12.5 in to the right of the second princi-
pal plane (or 2.5 in to the right of the second focal point, in agreement
with the previous solution).

The height of the image can now be determined from Eq. 2.7a.

m � � � � � �0.25

h′ � mh � (�0.25) (5) � �1.25 in

Example B

If the object of Example A is located 2 in to the right of the first focal
point, as shown in Fig. 2.5, where is the image and what is its height?
Using Eq. 2.3,

x′ � � � �50 in

Notice that the image is formed to the left of the second focal point; in
fact, if the optical system is of moderate thickness, the image is to the
left of the optical system and also to the left of the object. From Eq. 2.6
we get the magnification

m � � � � � 5

h′ � mh � (5) (5) � �25 in

The magnification and image height are both positive. In this case the
image is a virtual image. A screen placed at the image position will not
have an image formed on it, but the image may be observed by viewing
through the lens from the right. A positive sign for the lateral magnifi-
cation of a simple lens indicates that the image formed is virtual; a neg-

10
�
2

f
�
x

h′
�
h

�102

�
� 2

�f 2

�
x

12.5
�
�50

s′
�
s

h′
�
h

1
�
0.08

1
�
(�50)

1
�
10

1
�
s

1
�
f

1
�
s′
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Figure 2.5 Illustrating the for-
mation of a virtual image. See
Example B.



ative sign for the magnification of a simple lens indicates a real image.
Figure 2.5 shows the relationships in this example.

Example C

If the object of Example B is 0.1 in thick, what is the apparent thick-
ness of the image? Since the lateral magnification was found to be 5
times in example B, the longitudinal magnification, by Eq. 2.9, is
approximately 52, or 25. Thus the apparent image thickness is approx-
imately 25 times (0.1 in), or 2.5 in. If an exact value for the apparent
thickness is required, the image position for each surface of the object
must be calculated. Assuming that the front of the object was given in
Example B as 2 in to the right of the first focal point, then its rear sur-
face must lie 1.9 in to the right of f1. Its image is located at

x′ � � � �52.63 in

to the left of the second focal point. Thus the distance between the
image positions for the front and rear surfaces is 2.63 in, in reasonable
agreement with the approximate result of 2.5 in. Had we computed the
thickness for the case where the front and back surfaces of the object
were 1.95 and 2.05 in from the focal point, the results from the exact
and approximate calculations would have been in even better agree-
ment, yielding an image thickness of 2.502 in.

Optical systems not immersed in air

If the object and image are not in air, as assumed in the preceding
paragraphs, the following equations should be used instead of the
standard expressions of Eqs. 2.2 through 2.9.

Assume an optical system with an object-side medium of index n,
and an image-side medium of index n′. The first and second effective
focal lengths, f and f ′, respectively, may differ; they are related by

� (2.10)

The focal lengths can be determined by a ray-tracing calculation, just as
with an air-immersed system. For example, f ′ � �y1/u′k (see Eq. 2.34).

Object and image distances

� � � � (2.11)

x′ � (2.12)
�ff ′
�

x

n′
�
f ′

n
�
s

n
�
f

n
�
s

n′
�
s′

f ′
�
n′

f
�
n

�100
�

1.9
�f 2

�
x

Image Formation (First-Order Optics) 29



Magnifications

m � � � � (2.13)

for an object at infinity,

h′ � fup � f ′upn/n′ (2.14)

m� � � (note that m� � m2) (2.15)

Focal point to nodal point distance equals the other focal length.

2.4 Refraction of a Light Ray at a Single
Surface

As mentioned in Chap. 1, the path of a light ray through an optical sys-
tem can be calculated from Snell’s law (Eq. 1.3) by the application of a
modest amount of geometry and trigonometry. Figure 2.6 shows a light
ray (GQP) incident on a spherical surface at point Q. The ray is direct-
ed toward point P where it would intersect the optical axis at a dis-
tance L from the surface if the ray were extended. At Q the ray is
refracted by the surface and intersects the axis at P ′, a distance L′
from the surface. The surface has a radius R with center of curvature
at C and separates two media of index n on the left and index n′ on the
right. The light ray makes an angle U with the axis before refraction,
U ′ after refraction; angle I is the angle between the incident ray and
the normal to the surface (HQC) at point Q, and angle I ′ is the angle
between the refracted ray and the normal. Notice that plain or
unprimed symbols are used for quantities before refraction at the sur-
face; after refraction, the symbols are primed.

The sign conventions which we shall observe are as follows:

1. A radius is positive if the center of curvature lies to the right of the
surface.

2. As before, distances to the right of the surface are positive; to the
left, negative.

3. The angles of incidence and refraction (I and I′) are positive if the
ray is rotated clockwise to reach the normal.

4. The slope angles (U and U′) are positive if the ray is rotated clockwise
to reach the axis. (Historical Note: Until the latter part of the twenti-
eth century, the accepted convention for the sign of the slope was the
reverse of the current one, and Fig. 2.6 was an “all-positive diagram.”)

ff ′
�
x2


s′
�

s

�x′
�
f ′

f
�
x

ns′
�
n′s

h′
�
h

30 Chapter Two



5. The light travels from left to right.

(In Fig. 2.6 all quantities are positive except U and U′, which are neg-
ative.)

A set of equations which will allow us to trace the path for the ray
may be derived as follows. From right triangle PAC,

CA � (R � L) sin U (2.16)

and from right triangle QAC,

sin I � (2.17)

Applying Snell’s law (Eq. 1.3), we get the sine of the angle of refrac-
tion,

sin I′ � sin I (2.18)

The exterior angle QCO of triangle PQC is equal to �U � I, and, as
the exterior angle of triangle P′QC, it is also equal to �U ′ � I ′. Thus
�U � I � �U ′ � I ′, and

U′ � U�I � I′ (2.19)

From right triangle QA′C we get

sin I′ � (2.20)

and substituting Eqs. 2.17 and 2.20 into Eq. 2.18 gives us

CA′
�

R

n
�
n′

CA
�
R
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CA′ � CA (2.21)

Finally, the location of P′ is found by rearranging CA′ � (R � L′) sin
U ′ from right triangle P′A′C into

L′ � R � (2.22)

Thus, beginning with a ray defined by its slope angle U and its inter-
section with the axis L, we can determine the corresponding data, U ′
and L′, for the ray after refraction by the surface. Obviously, this
process could be applied surface by surface to trace the path of a ray
through an optical system.

2.5 The Paraxial Region

The paraxial region of an optical system is a thin threadlike region
about the optical axis which is so small that all the angles made by the
rays (i.e., the slope angles and the angles of incidence and refraction)
may be set equal to their sines and tangents. At first glance this con-
cept seems utterly useless, since the region is obviously infinitesimal
and seemingly of value only as a limiting case. However, calculations
of the performance of an optical system based on paraxial relation-
ships are of tremendous utility. Their simplicity makes calculation and
manipulation quick and easy. Since most optical systems of practical
value form good images, it is apparent that most of the light rays orig-
inating at an object point must pass at least reasonably close to the
paraxial image point. The paraxial relationships are the limiting rela-
tionships (as the angles approach zero) of the exact trigonometric rela-
tionships derived in the preceding section, and thus give locations for
image points which serve as an excellent approximation for the
imagery of a well-corrected optical system.

Paradoxically, the paraxial equations are frequently used with rela-
tively large angles and ray heights. This extension of the paraxial
region is useful in estimating the necessary diameters of optical ele-
ments and in approximating the aberrations of the image formed by a
lens system, as we shall demonstrate in later chapters.

Although paraxial calculations are often used in rough preliminary
work on optical systems and in approximate calculations (indeed, the
term “paraxial approximation” is often used), the reader should bear
in mind that the paraxial equations are perfectly exact for the paraxi-
al region and that as an exact limiting case they are used in aberra-
tion determination as a basis of comparison to indicate how far a
trigonometrically computed ray departs from its ideal location.

CA′
�
sin U′

n
�
n′
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The simplest way of deriving a set of equations for the paraxial
region is to substitute the angle itself for its sine in the equations
derived in the preceding section. Thus we get

from Eq. 2.16 ca � �(l � R)u (2.23)

from Eq. 2.17 i � ca/R (2.24)

from Eq. 2.18 i′ � ni/n′ (2.25)

from Eq. 2.19 u′ � u � i � i′ (2.26)

from Eq. 2.21 ca′ � n ca/n′ (2.27)

from Eq. 2.22 l′ � R � ca′/u′ (2.28)

Notice that the paraxial equations are distinguished from the trigono-
metric equations by the use of lowercase letters for the paraxial val-
ues. This is a widespread convention and will be observed throughout
this text. Note also that the angles are in radian measure, not degrees.

Equations 2.23 through 2.28 may be materially simplified. Indeed,
since they apply exactly only to a region in which angles and heights
are infinitesimal, we can totally eliminate i, u, and ca from the expres-
sions without any loss of validity. Thus, if we substitute into Eq. 2.28,
Eq. 2.27 for ca′ and Eq. 2.26 for u′, and continue the substitution with
Eqs. 2.23, 2.24, and 2.25, the following simple expression for l′ is
found:

l′ � (2.29)

By rearranging we can get an expression which bears a marked sim-
ilarity to Eq. 2.4 and Eq. 2.11 (relating the object and image distances
for a complete lens system):

� � (2.30a)

These two equations are useful when the quantity of interest is the
distance l′. If the object and image are at the axial intersection dis-
tances l and l′, the magnification is given by

m � � (2.30b)

In Sec. 2.2 we noted that the power of an optical system was the reci-
procal of its effective focal length. In Eq. 2.30a the term (n′ � n)/R is
the power of the surface. A surface with positive power will bend

nl′
�
n′l

h′
�
h

n
�
l

(n′ � n)
��

R
n′
�
l′

ln′R
��
(n′ � n) l � nR
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(converge) a ray toward the axis; a negative-power surface will bend
(diverge) a ray away from the axis.

2.6 Paraxial Raytracing through Several
Surfaces

The ynu raytrace

Another form of the paraxial equations is more convenient for use
when calculations are to be continued through more than one surface.
Figure 2.7 shows a paraxial ray incident on a surface at a height y
from the axis, with the ray-axis intersection distances l and l′ before
and after refraction. The height y in this case is a fictitious extension
of the paraxial region, since, as noted, the paraxial region is an infini-
tesimal one about the axis. However, since all heights and angles can-
cel out of the paraxial expressions for the intercept distances (as
indicated above), the use of finite heights and angles does not affect
the accuracy of the expressions. For systems of modest aperture these
fictitious heights and angles are a reasonable approximation to the
corresponding values obtained by exact trigonometrical calculation.

In the paraxial region, every surface approaches a flat plane surface,
just as all angles approach their sines and tangents. Thus we can
express the slope angles shown in Fig. 2.7 by u � �y/l and u′ � �y/l′,
or l � �y/u and l′ � �y/u′. If we substitute these latter values for l and
l′ into Eq. 2.30a, we get

� �

and multiplying through by y, we find the slope after refraction.

n′u′ � nu � y (2.31)

It is frequently convenient to express the curvature of a surface as the
reciprocal of its radius, C � 1/R; making this substitution, we have

n′u′ � nu � y (n′ � n) C (2.31a)

(n′ � n)
��

R

nu
�
y

� (n′ � n)
��

R
n′u′
�

y
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Figure 2.7 Illustrating the rela-
tionship y � �lu � �l′u′ for
paraxial rays.



To continue the calculation to the next surface of the system, we
require a set of transfer equations. Figure 2.8 shows two surfaces of an
optical system separated by an axial distance t. The ray is shown after
refraction by surface #1; its slope is the angle u′1. The intersection
heights of the ray at the surfaces are y1 and y2, respectively, and since
this is a paraxial calculation, the difference between the two heights
can be given by tu′1. Thus, it is apparent that

y2 � y1 � tu′1 � y1 � t (2.32)

And if we note that the slope of the ray incident on surface #2 is the
same as the slope after refraction by #1, we get the second transfer
equation

u2 � u′1 or n2u2 � n′1u′1 (2.33)

These equations can now be used to determine the position and size of
the image formed by a complete optical system, as illustrated by the
following example. Note that the paraxial ray heights and ray slopes
are scalable (i.e., they may be multiplied by the same factor). The
result of scaling is the data of another ray (which has the same axial
intersection).

Example D

Figure 2.9 shows a typical problem. The optical system consists of
three surfaces, making a “doublet” lens whose radii, thicknesses, and
indices are indicated in the figure. The object is located 300 mm to the
left of the first surface and extends a height of 20 mm above the axis.
The lens is immersed in air, so that object and image are in a medium
of index n � 1.0.

The first step is to tabulate the parameters of the problem with the
proper signs associated. Following the sign convention given above, we
have the following:

n′1u′1
�

n′1
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transfer of a paraxial ray from
surface to surface by y2 � y1 �
tu′1. Note that although the sur-
faces are drawn as curved in the
figure, mathematically they are
treated as planes. Thus the ray
is assumed to travel the axial
spacing t in going from surface
#1 to surface #2.



h � � 20 mm

l1 � �300 mm n1 � 1.0

R1 � �50 mm C1 � � 0.02 t1 � 10 mm n′1 � n2 � 1.5

R2 � �50 mm C2 � �0.02 t2 � 2 mm n′2 � n3 � 1.6

R3 � plano C3 � 0 n′3 � 1.0

The location of the image can be found by tracing a ray from the point
where the object intersects the axis (O in the figure); the image will
then be located where the ray recrosses the axis at O′. We can use any
reasonable value for the starting data of this ray. Let us trace the path
of the ray starting at O and striking the first surface at a height of 10
mm above the axis. Thus y1 � �10 and we get the initial slope 
angle by

u1 � � � �0.0333

and since n1 � 1.0, n1u1 � �0.0333. The slope angle after refraction is
obtained from Eq. 2.31a.

n′1u′1 � �y1 (n′1 � n1) C1 � n1u1

� �10 (1.5 � 1.0) (�0.02) � 0.0333

� �0.1 � 0.0333

n′1u′1 � �0.0666

The ray height at surface #2 is found by Eq. 2.32.

y2 � y1 �

� 10 �
10 (�0.0666)
��

1.5

t1 (n′1u′1)
��

n′1

�10
�
�300

�y1
�

l1
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� 10 � 0.444

y2 � 9.555

Noting that n2u2 � n′1u′1, the refraction at the second surface is carried
through by

n′2u′2 � �y2 (n′2 � n2)C2 � n2u2

� �9.555 (1.6 � 1.5) (�0.02) �0.0666

� �0.019111 � 0.0666

� �0.047555

and the ray height at the third surface is calculated by

y3 � y2 � � 9.555 �

� 9.555 � 0.059444 � 9.496111

Since the last surface of the system is plane, i.e., of infinite radius, its
curvature is zero and the product nu is unchanged at this surface:

n′3u′3 � �y3 (n′3 � n3) C3 � n3u3

� �9.496111 (1.0 � 1.6) (0) �0.047555 � �0.047555

and

u′3 � � �0.047555

Now the location of the image is given by the final intercept length l′,
which is determined by

l′3 � �

� � 199.6846

The execution of a long chain of calculations such as the preceding
is much simplified if the calculation is arranged in a convenient table
form. By ruling the paper in squares, a simple arrangement of the con-
structional parameters at the top of the sheet and the ray data below
helps to speed the calculation and eliminate errors. The following table
(Fig. 2.10) sets forth the curvatures, thicknesses, and indices of the
lens in the first three rows; the next two rows contain the ray heights
and index-slope angle products of the calculation worked out above.

�9.496111
��
�0.047555

�y3
�
u′3

n′3u′3
�

n′3

2(�0.04755)
��

1.6

t2 (n′2u′2)
��

n′2
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The image height can now be found by tracing a ray from the top of
the object and determining the intersection of this ray with the image
plane we have just computed. Such a ray is shown by the dashed line
in Fig. 2.9. If we elect to trace the ray which strikes the vertex of the
first surface, then y1 will be zero and the initial slope angle will be giv-
en by

u1 � � � �0.0666

The calculation of this ray is indicated in the sixth and seventh rows
of Fig. 2.10 and yields y3 � �0.52888…and n′3u′3 � �0.067555.

The height of the image, h′ in Fig. 2.9, can be seen to equal the sum
of the ray height at surface #3 plus the amount the ray climbs or drops
in traveling to the image plane.

h′ � y3 � l′3 � �0.52888 � 199.6846

� �14.0187

Notice that the expression used to compute h′ is analogous to Eq. 2.32;
if we regard the image plane as surface #4 and the image distance l′3
� 199.6846 as the spacing between surfaces #3 and #4, Eq. 2.32 can be
used to calculate y4, which is h′.

Similarly, Eq. 2.32 can be used to determine the initial slope angle
u1 by regarding the object plane as surface zero and rearranging the
equation to solve for u′0 � u1 as shown below:

y1 � y0 � t0   

u′0 � u1 � �
h � y1
�

l1

y1 � y0
�

t0

n′0 u′0�
n′0

�0.067555
��

1.0

n′3 u′3
�

n′3

� (0 � 20)
��

�300

� (y1 � h)
��

l1
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2.7 Calculation of the Focal Points and
Principal Points

In general, the focal lengths of an optical system can easily be calcu-
lated by tracing a ray parallel to the optical axis (i.e., with an initial
slope angle u equal to zero) completely through the optical system.
Then the effective focal length (efl) is minus the ray height at the first
surface divided by the ray slope angle u′k after the ray emerges from
the last surface. Similarly, the back focal length (bfl) is minus the ray
height at the last surface divided by u′k. Using the customary conven-
tion that the data of the last surface of the system are identified by the
subscript k, we can write

ef l � (2.34)

bf l � (2.35)

The cardinal points of a single lens element can be readily deter-
mined by use of the raytracing formulas given in the preceding section.
The focal point is the point where the rays from an infinitely distant
axial object cross the optical axis at a common focus. As indicated, this
point can be located by tracing a ray with an initial slope (u1) of zero
through the lens and determining the axial intercept.

Figure 2.11 shows the path of such a ray through a lens element.
The principal plane (p2) is located by the intersection of the extensions
of the incident and emergent rays. The effective focal length (efl) or
focal length (usually symbolized by f ), is the distance from p2 to f2 and,
for the paraxial region, is given by

ef l � f �

The back focal length (bfl) can be found from

�y1
�
u′2

�yk
�
u′k

�y1
�
u′k
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Figure 2.11 A ray parallel to the
axis is traced through an ele-
ment to determine the effective
focal length and back focal
length.



bf l �

Owing to the frequency with which these quantities are used, it is
worthwhile to work up a single equation for each of them. If the lens
has an index of refraction n and is surrounded by air of index 1.0, then
n1 � n′2 � 1.0 and n′1 � n2 � n. The surface radii are R1 and R2, and
the surface curvatures are c1 and c2. The thickness is t. At the first sur-
face, using Eq. 2.31a,

n′1u′1 � n1u1� (n′1 � n1) y1c1 � 0 � (n � 1) y1c1

The height at the second surface is found from Eq. 2.32:

y2 � y1 � � y1 � � y1 �1 � tc1�
And the final slope is found by Eq. 2.31a:

n′2u′2 � n′1u′1 � y2(n′2 � n2) c2

� � (n � 1)y1c1 � y1 �1 � tc1� (1 � n) c2

(1.0)u′2 � u′2 � � y1(n � 1) �c1 � c2 � tc1c2 �
Thus the power � (or reciprocal focal length) of the element is
expressed as

� � � � (n � 1) �c1 � c2 � tc1c2 � (2.36)

or, if we substitute c � 1/R,

� � � (n � 1) � � � � (2.36a)

The back focal length can be found by dividing y2 by u′2 to get

bf l � � f � (2.37)

The distance from the second surface to the second principal point is
just the difference between the back focal length and the effective focal
length (see Fig. 2.11); this is obviously the last term of Eq. 2.37.

The above procedure has located the second principal point and sec-
ond focal point of the lens. The “first” points are found simply by sub-
stituting R1 for R2 and vice versa.

ft (n � 1)
��

nr1

�y2
�
u′2

t (n � 1)
��

R1R2n

1
�
R2

1
�
R1

1
�
f

(n � 1)
�

n

�u′2
�

y1

1
�
f

(n � 1)
�

n

(n � 1)
�

n

(n � 1)
�

n

t (n � 1) y1c1
��

n

tn′1u′1
�

n′1

�y2
�
u′2
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The focal points and principal points for several shapes of elements
are diagramed in Fig. 2.12. Notice that the principal points of an
equiconvex or equiconcave element are approximately evenly spaced
within the element. In the plano forms, one principal point is always
at the curved surface, the other is about one-third of the way into the
lens. In the meniscus forms shown, one of the principal points is com-
pletely outside the lens; in extreme meniscus shapes, both the princi-
pal points lie outside the lens and their order may be reversed from
that shown. Note well that the focal points of the negative elements
are in reversed order compared to a positive element.

If the lens element is not immersed in air, we can derive a similar
expression for it. Assuming that the object medium has an index of n1,
the lens index is n2; and the image medium has an index of n3, then the
two effective focal lengths and the back focal length can be calculated
from

� � � � (2.38)

bf l � f ′ � (2.39)
f ′t (n2 � n1)
��

n2 R1

(n2 � n3) (n2 � n1) t
���

n2R1R2

(n2 � n3)
��

R2

(n2 � n1)
��

R1

n3
�
f ′

n1
�
f

Image Formation (First-Order Optics) 41

Figure 2.12 The location of the focal points and principal
points for several shapes of converging and diverging 
elements.



Note that if n1 and n3 are equal to 1.0 (i.e., the index of air), these
expressions reduce to Eqs. 2.36 and 2.37.

2.8 The “Thin Lens”

If the thickness of a lens element is small enough so that its effect on
the accuracy of the calculation may be neglected, the element is called
a thin lens. The “thin lens” concept is an extremely useful one for the
purposes of quick preliminary calculations and analysis and as a
design tool.

The focal length of a thin lens can be derived from Eq. 2.36 by set-
ting the thickness equal to zero.

� (n � 1) (c1 � c2) (2.40)

� (n � 1) � � � (2.40a)

Since the lens thickness is assumed to be zero, the principal points of
a “thin lens” are coincident with the location of the lens. Thus, in com-
puting object and image positions, the distances s and s′ of Eqs. 2.4, 2.5,
2.7, etc., are measured from the lens itself. The term (c1 � c2) is often
called the total curvature, or simply the curvature of the element.

Example E

An object 10 mm high is to be imaged 50 mm high on a screen that is
120 mm distant. What are the radii of an equiconvex lens of index 1.5
which will produce an image of the proper size and location?

The first step in the calculation is the determination of the focal
length of the lens. Since the image is a real one, the magnification will
have a negative sign, and by Eq. 2.7a we have

m � � (�) � or s′ � �5s

For the object and image to be 120 mm apart,

120 � �s � s′ � �s � 5s � �6s

s � �20 mm

and s′ � �5s � � 100 mm

Substituting into Eq. 2.4 and solving for f, we get

� �
1

�
�20

1
�
f

1
�
100

s′
�
s

50
�
10

h′
�
h

1
�
R2

1
�
R1

1
�
f

1
�
f
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f � 16.67 mm

Noting that for an equiconvex lens R1 � �R2, we use Eq. 2.40a to solve
for the radii

� � 0.06 � (n � 1) � � � � 0.5

R1 � � 16.67 mm

R2 � �R1 � �16.67 mm

2.9 Mirrors

A curved mirror surface has a focal length and is capable of forming
images just as a lens does. The equations for paraxial raytracing (Eqs.
2.31 and 2.32) can be applied to reflecting surfaces by taking into
account two additional sign conventions. The index of refraction of a
material was defined in the first chapter as the ratio of the velocity of
light in vacuum to that in the material. Since the direction of propa-
gation of light is reversed upon reflection, it is logical that the sign of
the velocity should be considered reversed, and the sign of the index
reversed as well. Thus the conventions are as follows.

1. The signs of all indices following a reflection are reversed, so the
index is negative when light travels right to left.

2. The signs of all spacings following a reflection are reversed if the
following surface is to the left.

Obviously if there are two reflecting surfaces in a system, the signs
of the indices and spacings are changed twice and, after the second
change, revert to the original positive signs, since the direction of prop-
agation is again left to right.

Figure 2.13 shows the locations of the focal and principal points of
concave and convex mirrors. The ray from the infinitely distant source
which defines the focal point can be traced as follows, setting n � 1.0
and n′ � �1.0:

nu � 0 (since the ray is parallel to the axis)

n′u′ � nu � y � 0 � y �

thus

2y
�
R

(�1 � 1)
��

R

(n′ � n)
��

R

1
�
0.06

2
�
R1

1
�
R2

1
�
R1

1
�
f
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u′ � � �

The final intercept length is

l′ � � �

and we find that the focal point lies halfway between the mirror and
its center of curvature.

The concave mirror is the equivalent of a positive converging lens
and forms a real image of distant objects. The convex mirror forms a
virtual image and is equivalent to a negative element. Because of the
index sign reversal on reflection, the sign of the focal length is
reversed also and the focal length of a simple mirror is given by

f � �

so that the sign conforms to the convention of positive for converging
elements and negative for diverging elements.

Example F

Calculate the focal length of the Cassegrain mirror system shown in Fig.
2.14 if the radius of the primary mirror is 200 mm, the radius of the sec-
ondary mirror is 50 mm, and the mirrors are separated by 80 mm.
Following our sign convention, the radii are both negative and the dis-
tance from primary to secondary mirror is also considered negative, since
the light traverses this distance right to left. The index of the air is tak-
en as �1.0 before the primary and after the secondary; between the two,
the index is �1.0. Thus the optical data of the problem and the compu-
tation are set up and carried through as shown in Fig. 2.15. Careful
attention to signs is necessary in this calculation to avoid mistakes.

R
�
2

R
�
2

yR
�
2y

�y
�
u′

�2y
�

R

n′u′
�
�1

n′u′
�
n′
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Figure 2.13 The location of the focal points for reflecting
surfaces.



The focal length of the system is given by �y1/u′2 � �1.0/�0.002 �
500 mm. The final intercept distance (from R2 to the focus) is equal to
�y2/u′2 � �0.2/�0.002 � 100 mm, and the focal point lies 20 mm to the
right of the primary mirror. Notice that the (second) principal plane is
completely outside the system, 400 mm to the left of the secondary
mirror, and that this type of system provides a long focal length and a
large image in a small, compact system.

2.10 Systems of Separated Components

It is often convenient to treat an optical system which is made up of
separated elements or components (i.e., a group of elements treated as
a unit) in terms of the component focal lengths and spacings instead of
handling the system by means of surface-by-surface calculation. To
this end we can introduce the paraxial ray height y into the equations
of Sec. 2.3, just as we did in Sec. 2.6.

An optical component (which may be made up of a number of ele-
ments) is shown in Fig. 2.16 with its object a distance s from the first
principal plane and its image a distance s′ from the second principal
plane. The principal planes are planes of unit magnification, in that
the incident and emergent ray paths appear to strike (and emerge
from) the same height on the first and second principal planes. Thus,
in Fig. 2.16 a ray from the object point, which would (if extended)
strike the first principal plane at a distance y from the axis, emerges
from the last surface of the system as if it were coming from the same
height y on the second principal plane. For this reason we can write
the following relationships:
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Figure 2.14 Cassegrain mirror
system. The image formed by
the primary mirror is the virtual
object for the secondary mirror.

Figure 2.15



u � and u′ �

and substitute s � �y/u and s′ � �y/u′ into Eq. 2.4:

� � 

� � 

u′ � u �

If we now replace the reciprocal focal length (1/f) with the component
power �, we get the first equation of the set:

u′ � u � y� (2.41)

The transfer equations to the next component in the system are the
same as those used in the paraxial surface-by-surface raytrace of 
Sec. 2.6:

y2 � y1 � du′1 (2.42)

u′1 � u2 (2.43)

where y1 and y2 are the ray heights at the principal planes of compo-
nents #1 and #2, u′1 is the slope angle after passing through 
component #1, and d is the axial distance from the second principal
plane of component #1 to the first principal plane of component #2.

Note that these equations are equally applicable to systems com-
posed of either thick or “thin” lenses. Obviously, when applied to thin
lenses, d becomes the spacing between elements, since the element
and its principal planes are coincident.

Focal lengths of two-component systems

The preceding equations may be used to derive compact expres-
sions for the effective focal length and back focal length of a system 
comprised of two separated components. Let us assume that we have
two lenses of powers �a and �b separated by a distance d (if the lenses

y
�
f

1
�
f

�u
�
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�
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Figure 2.16 The principal planes
are planes of unit magnification,
so a ray appears to leave the sec-
ond principal plane at the same
height (y) that it appears to
strike the first principal plane.



are thin; if they are thick, d is the separation of their principal points).
The system is sketched in Fig. 2.17.

Beginning with a ray parallel to the axis which strikes lens a at ya,
we have

ua � 0

u′a � 0 � ya�a by Eq. 2.41

yb � ya � dya�a � ya (1 � d�a) by Eq. 2.42

u′b � �ya�a � ya (1 � d�a) �b by Eq. 2.41

� �ya (�a � �b � d�a�b)

The power (reciprocal focal length) of the system is given by

�ab � � � �a � �b � d�a�b

� � � (2.44)

and thus

fab � (2.45)

The back focus distance (from the second principal point of b) is giv-
en by

B � �

(2.46)

� �

By substituting fab/fa from Eq. 2.45, we get

B � (2.46a)

The front focus distance (ffd) for the system is found by reversing the
raytrace (i.e., trace from right to left) or more simply by substituting fb

for fa to get

(�)ffd � (2.46b)

Frequently it is useful to be able to solve for the focal lengths of the
components when the focal length, back focus distance, and spacing
are given for the system. Manipulation of Eqs. 2.45 and 2.46a will
yield

fab (fb � d)
��

fb

fab (fa � d)
��

fa

fb (fa � d)
��
fa � fb � d

(1 � d/fa)
���
1/fa � 1/fb � d/fafb

ya (1 � d�a)���
ya (�a � �b � d�a�b)

�yb�
u′b

fa fb��
fa � fb � d

d
�
fa fb

1
�
fb

1
�
fa

�u′b
�

ya

1
�
fab
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fa � (2.47)

fb � (2.48)

General equations for two-component
systems

Using the same technique, we can derive expressions which give us
the solution to all two-component optical problems. There are two
types of problems which occur. With reference to Fig. 2.18, the first
type occurs when we are given the required system magnification, the
positions of the two components, and the object-to-image distance
(neglecting the spaces between the principal planes of the compo-
nents.) Thus, knowing s, s′, d, and the magnification m, we wish to
determine the powers (or focal lengths) of the two components, which
are given by

�A � (2.49)

�B � (2.50)

In the second type of problem we are faced with the inverse case, in
that we know the component powers, the desired object-to-image dis-
tance, and the magnification; we must determine the locations for the
two components. Under these circumstances the mathematics result in
a quadratic relationship, and thus there may be two solutions, one solu-
tion, or no solution (i.e., an imaginary solution.) The following 

(d � ms � s′)
��

ds′

(ms � md � s′)
��

msd

�dB
��
fab � B � d

dfab�
fab � B
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Figure 2.17 Raytrace through two separated components to deter-
mine the focal length and back focus distance of the combination.



quadratic equation in d (the spacing) is first solved for d [using the
standard equation x � (� b ± �b2 � 4�ac)�/2a to solve O � ax2 � bx � c].

O � d2 � dT � T (fA � fB) � (2.51)

Then s and s′ are easily determined from

s � (2.52)

s′ � T � s � d (2.53)

Thus Eqs. 2.44 through 2.53 constitute a set of expressions which can
be used to solve any problem involving two components. Since two-
component systems constitute the vast majority of optical systems,
these are extremely useful equations. Note that a change of the sign of
the magnification m from plus to minus will result in two completely
different optical systems. They will produce the same enlargement (or
reduction) of the image. One will have an erect, and the other an
inverted, image, but one system may be significantly more suitable
than the other for the intended application.

2.11 The Optical Invariant

The optical invariant, or Lagrange invariant, is a constant for a given
optical system, and it is a very useful one. Its numerical value may be
calculated in any of several ways, and the invariant may then be used
to arrive at the value of other quantities without the necessity of cer-
tain intermediate operations or raytrace calculations which would oth-
erwise be required.

(m � 1) d � T
��
(m � 1) �md�A

(m � 1)2 fAfB��
m
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Figure 2.18 A two-component system operating at finite conjugates.



Let us consider the application of Eq. 2.31a to the tracing of two rays
through an optical system. One ray (the “axial” ray) is traced from the
foot, or axial intercept, of the object; the other ray (the “oblique” ray)
is traced from an off-axis point on the object. Figure 2.19 shows these
two rays passing through a generalized system.

At any surface in the system, we can write out Eq. 2.31a for each ray,
using the subscript p to denote the data of the oblique ray.
For the axial ray

n′u′ � nu � y (n′ � n) c

For the oblique ray

n′u′p � nup � yp (n′ � n) c

We now extract the common term (n′ � n)c from each equation and
equate the two expressions:

(n′ � n) c � �

Multiplying by yyp and rearranging, we get

ypnu � ynup � ypn′u′ � yn′u′p

Note that on the left side of the equation the angles and indices are for
the left side of the surface (that is, before refraction) and that on the
right side of the equation the terms refer to the same quantities after
refraction. Thus ypnu � ynup is a constant which is invariant across
any surface.

By a similar series of operations based on Eq. 2.32, we can show that
(ypnu � ynup) for a given surface is equal to (ypnu � ynup) for the next
surface. Thus this term is not only invariant across the surface but also
across the space between the surfaces; it is therefore invariant through-
out the entire optical system or any continuous part of the system.

Invariant Inv � ypnu � ynup � n (ypu � yup) (2.54)

nup � n′u′p
��

yp

nu � n′u′
��

y
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The invariant and magnification

As an example of its application, we now write the invariant for the
object plane and image plan of Fig. 2.19. In an object plane yp � h,
n � n, y � 0, and we get

Inv � hnu � (0) nup � hnu

In the corresponding image plane yp � h′, n � n′, y � 0, and we get

Inv � h′n′u′� (0) n′u′p � h′n′u′

Equating the two expressions gives

hnu � h′n′u′ (2.55)

which can be rearranged to give a very generalized expression for the
magnification of an optical system

m � � (2.56)

Equation 2.55 is, of course, valid only for the extended paraxial
region; this relationship is sometimes applied to trigonometric calcu-
lations, where it takes the form

hn sin u � h′n′ sin u′ (2.57)

Example G

We can apply the invariant to the calculation made in Example D by
assuming that only the axial ray has been traced. The axial ray slope at
the object was �0.0333…and the corresponding computed slope at the
image was found to be �0.047555.…Since the object and image were
both in air of index 1.0, we can find the image height from Eq. 2.56,

m � � � �

h′ �

h′ � �14.0187

This value agrees with the height found in Example D by tracing a
ray from the tip of the object to the tip of the image. The saving of time
by the elimination of the calculation of this extra ray indicates the use-
fulness of the invariant.

20 (�0.0333)
��

�0.047555)

1.0 (�0.0333…)
���
1.0 (�0.047555…)

nu
�
n′u′

h′
�
20

h′
�
h

nu
�
n′u′

h′
�
h
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Image height for object at infinity

Another useful expression is derived when we consider the case of a
lens with its object at infinity. At the first surface the invariant is

Inv � ypn (0) �y1nup � �y1nup

since the “axial” ray from an infinitely distant object has a slope angle
u of zero. At the image plane yp is the image height h′, and y for the
“axial” ray is zero; thus

Inv � h′n′u′ � (0) n′u′p � h′n′u′

Equating the two expressions for Inv, we get

h′n′u′ � �y1nup (2.58)

h′ � �up

which is useful for systems where the object and image are not in air.
If both object and image are in air, we set n � n′ � 1.0, and recalling
that f � �y1/u′, we find

h′ � up f (2.59)

� tan up � f (for nonparaxial rays)

Telescopic magnification

If we evaluate the invariant at the entrance and exit pupils of a sys-
tem, yp is (by definition) equal to zero, and the invariant becomes

Inv � �ynup � �y′n′u′p

where y is the pupil semidiameter, and up is the angular half field of
view. For an afocal system we can equate the invariant at the entrance
and exit pupils and then solve for the afocal (or telescopic) angular
magnification to get

MP � �

which indicates that the telescopic magnification is equal to the ratio
of entrance pupil diameter to exit pupil diameter (assuming that n �
n′). This is discussed further in Sec. 9.1.

Data of a third ray from two traced rays

As one might expect from the preceding, a paraxial system is com-
pletely described by the ray data of any two unrelated rays. Thus,

yn
�
y′n′

u′p
�up

ny1�
n′u′
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when we have traced two rays, we can determine the ray data of a
third ray without further ray tracing, by using

y� � Ayp � By (2.60)

u� � Aup � Bu (2.61)

where y� and u� refer to the third ray and yp, up, y, and u are the ray data
for the oblique and axial rays as before. The constants A and B are
determined by solving Eqs. 2.60 and 2.61 to get

A � � ( y�u � u�y) (2.62)

B � � (u�yp � y�up) (2.63)

Equations 2.62 and 2.63 are evaluated for some surface in the optical
system at which the height and slope data for all three rays are known
(e.g., at the first surface or at the aperture stop). The constants A and
B are inserted into Eqs. 2.60 and 2.61; the values of y� and u� can then
be determined for locations in the optical system at which the ray data
for only the axial and oblique rays are known, by inserting this data in
Eqs. 2.60 and 2.61.

Focal length determination

As an example of the application of these equations, consider a system
for which the axial and oblique rays have been traced for finite conju-
gates. The front, back, and effective focal lengths can be determined
without additional raytracing as follows: We have values for the initial
rays (y, u, yp, and up at the first surface) and for the final rays (y′, u′, y′p,
and u′p, at the last surface); we wish to determine the final data (y�′ and
u�′) for a third ray with starting data for y� � 1 and u� � 0. The applica-
tion of Eqs. 2.60 through 2.63 plus Eqs. 2.34 and 2.35 will yield

efl � � � (2.64)

bf l � � (2.65)

Reversing the process by setting u�′ � 0 and y�′ � 1, we get the (nor-
mally negative) value for the front focal length

ffl � � (2.66)
�(�u′py � u′yp)
��

uup′ � upu′
�y��
u�

� (upy′ � uy′p)
��

uu′p � upu′
� y� ′
�

u� ′

� (yup � uyp)
��

uu′p � upu′
y��
u� ′

n
�
Inv

u�yp � y�up
��
uyp � yup

n
�
Inv

y�up � u�yp
��
uyp � yup
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Most optical computer programs make use of Eqs. 2.60 to 2.63 to
locate the entrance pupil when the aperture stop position is given and
use Eqs. 2.64 to 2.66 to calculate the focal lengths. Such programs usu-
ally put a nominally infinitely distant object at a large, but finite, dis-
tance and thus cannot directly calculate the focal lengths without a
special calculation.

Aperture stop and entrance pupil

Another optical software application of this principle involves the
determination of the entrance pupil location when the required loca-
tion of the aperture stop is given. Again, assuming that an axial and a
principal ray have been traced, we determine the constant B for use in
Eqs. 2.60 and 2.61 which will shift the traced principal ray so that its
height at the desired stop surface is zero. This yields

B � �yp/y

where yp and y are taken at the stop surface. Then the new principal
ray data at the first surface are

New yp � old yp � By

New up � old up � Bu

The pupil location corresponding to the required stop position is then
yp/up, and a principal ray aimed at the center of the pupil will pass
through the center of the stop.

2.12 Matrix Optics

The form of the paraxial raytracing equations (Eqs. 2.31 and 2.32 or
Eqs. 2.41 and 2.42) is A � B � CD. Using Eqs. 2.41 and 2.42, for exam-
ple, and adding two obvious identities, we have

u′ � u � y� (plus y � y)

y2 � y1 � du′1 (plus u2 � u′1)

We can write the first set in matrix notation as

� � � � � � � (2.67)

The second set becomes

� � � � � � � (2.68)u′1
y1

1 0
d 1

u2
y2

u
y

1 � �
0    1

u′
y
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Substituting the left side of Eq. 2.67 into Eq. 2.68 and multiplying the
two inner matrices, we get

� � � � � � �
which is the matrix form of Eqs. 2.41 and 2.42.

This process can be chained to encompass an entire optical system if
desired, and the final product of all the inner matrices can be inter-
preted to yield the cardinal points, focal lengths, etc., of the system.

Note well that there is absolutely no magic in this process. The
amount of computation involved is exactly the same as in the corre-
sponding paraxial raytrace. To this author it seems far more informa-
tive to trace the ray paths and to have the added benefit of a
knowledge of the paraxial ray heights and slopes. However, for those
to whom matrix manipulation is second nature, this formulation has a
definite appeal, although no advantage.

2.13 The y-y bar Diagram

The y-ybar diagram is a plot of the ray height y of an axial ray versus
the ray height, ybar, of an oblique (i.e., principal or chief) ray. Thus each
point on the plot represents a component (or surface) of the system.

Figure 2.20a shows an erecting telescope and Fig. 2.20b shows the
corresponding y-ybar diagram. Note that point A in the y-ybar diagram
corresponds to component A, etc. An experienced practitioner can
quickly sketch up a system in y-ybar form in the same way that a sys-
tem can be sketched using elements and rays.

The reduction of either a y-ybar diagram or a sketch with rays to a
set of numerical values for the component powers and spacings
involves the same amount of computation in either case. Although the
y-ybar diagram is simpler to draw than a ray sketch, there is obvious-
ly more information in the ray sketch, and an experienced practition-
er can easily draw a ray sketch accurately enough to allow conclusions
to be drawn as to its practicality, size, etc. which the y � ybar diagram
does not readily provide.

2.14 The Scheimpflug Condition

To this point we have assumed that the object is defined by a plane
surface which is normal to the optical axis. However, if the object plane
is tilted with respect to the vertical, then the image plane is also 
tilted. The Scheimpflug condition is illustrated in Fig. 2.21a, which
shows the tilted object and image planes intersecting at the plane of
the lens. Or, stated more precisely for a thick lens, the extended object

u1
y1

1 � �
d 1 � d�

u2
y2
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and image planes intersect their respective principal planes at the
same height.

For small tilt angles in the paraxial region, it is apparent from Fig.
2.21a that the object and image tilts are related by

�′ � � � m� (2.69)

where m is the magnification. For finite (real) angles

tan �′ � tan � � m tan � (2.70)

Note that in general a tilted object or image plane will cause what is
called keystone distortion, because the magnification varies across the
field. This results from the variation of object and image distances
from top to bottom of the field. This distortion is often seen in overhead
projectors when the top mirror is tilted to raise the image projected on
the screen. This is equivalent to tilting the screen. As shown in Fig.
2.21b, keystone distortion can be prevented by keeping the plane of the
object effectively parallel to the plane of the image. In a projector this
means that the field of view of the projection lens must be increased

s′
�
s

s′
�
s
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Figure 2.20 (a) Schematic of an optical system and (b) the corresponding
y-ybar diagram.



on one side of the axis by the amount that the beam is tilted above the
horizontal.

2.15 Summary of Sign Conventions

1. Light travels from left to right.

2. Focal length is positive for converging lenses.
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Figure 2.21 (a) The Scheimpflug condition can be used to
determine the tilt of the image surface when the object sur-
face is tilted away from the normal to the optical axis. The
magnification under these conditions will vary across the
field, producing “keystone” distortion. As diagramed here, the
magnification of the top of the object is larger than that of the
bottom. (Compare the ratio of image distance to object dis-
tance for the rays from the top and bottom of the object.) (b)
Keystoning can be avoided if the object and image planes are
parallel. The figure shows how the “projection axis” can be
tilted upward without producing keystone distortion.



3. Heights above the axis are positive.

4. Distances to the right are positive.

5. A radius or curvature is positive if the center of curvature is to the
right of the surface.

6. Angles are positive if the ray is rotated clockwise to reach the nor-
mal or the axis.

7. After a reflection (when light direction is reversed), the signs of sub-
sequent indices and spacings are reversed; i.e., if light travels from
right to left, the index is negative; if the next surface is to the left,
the space is negative.

It may be noted that, although the discussions of this chapter have
centered about spherical surfaces, and the equations derived have uti-
lized the radii and curvatures of spherical surfaces, the paraxial
expressions are equally valid for all surfaces of rotation centered on
the optical axis when the osculating radius (i.e., the radius of the sur-
face of the axis) of the surface is used. This includes both conic sections
and generalized aspheric surfaces.
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Exercises

1 A 10-in-focal-length lens forms an image of a telephone pole which is 200
ft away (from its first principal point). Where is the image located (a) with
respect to the focal point of the lens, (b) with respect to the second principal
point?

ANSWER: (a) 0.0418 in; (b) 10.0418 in

2 (a) How big is the image (in Exercise 1) if the pole is 50 ft high? (b) What
is the magnification?

ANSWER: (a) �2.5104 in; (b) �0.00418�

3 A 1-in cube is 20 in away from the first principal point of a negative lens
of 5 in focal length. Where is the image and what are its dimensions (height,
width, thickness)?

ANSWER: h � 0.2 in, w � 0.2 in, th � 0.04 in. Note that f � �5 in.

4 The first principal point of a 2-in-focal-length lens is 1 in from an object.
Where is the image and what is the magnification?

ANSWER: s′ � �2 in, m � �2.0�

5 A 1-mm detector is “immersed” on the plano surface of a plano convex
lens, index 1.5, radius 10 mm. When viewed through the convex surface,
where is the image and what is its size if the immersion lens is (a) 7 mm thick,
(b) 10 mm thick, (c) 16.67 mm thick?

ANSWER: (a) 6.09 mm behind surface and is 1.304 � 1.304 mm; (b) 10.0 mm
behind surface and is 1.5 � 1.5 mm; (c) 25.0 mm behind surface and is 2.25 �
2.25 mm

6 Given an equiconvex lens, radii 100, thickness 10, and index 1.5, trace a
ray (parallel to the axis) through the lens, beginning at a ray height of (a) 1.0,
and (b) 10.0.

ANSWER: y2 � 0.9667y1 u′2 � �0.009833y1

7 Determine the effective and back focal lengths of the lens in Exercise 6 (a)
from the raytrace data, and (b) using the thick lens equations.

ANSWER: efl � 101.6949 bfl � 98.3051

8 What is the focal length of the lens in Exercise 6 if it is treated as a thin
lens?

ANSWER: 100.0
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9 A Gregorian telescope objective is composed of a concave primary mirror
with a radius of 200 and a concave secondary mirror with a radius of 50. The
separation of the two mirrors is 130. Find the effective focal length and locate
the focus. Figure 13.38 shows a Gregorian objective.

ANSWER: f � �500, bf � �150, and focus is 20 behind primary.

10 Find the effective, back, and front focal lengths of a system whose front
component has a �10-in focal length and whose rear component has a �10-in
focal length when the separation is 5 in.

ANSWER: efl � 20; bfl � 10; �ffl � 30

11 What component powers are necessary in a two-element system if one
requires a 20-in focal length, a 10-in back focus, and a 5-in air space?

ANSWER: fa � �10; fb � �10
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Aberrations

3.1 Introduction

In Chap. 2 we discussed the image-forming characteristics of optical
systems, but we limited our consideration to an infinitesimal thread-
like region about the optical axis called the paraxial region. In this
chapter we will consider, in general terms, the behavior of lenses with
finite apertures and fields of view. It has been pointed out that well-
corrected optical systems behave nearly according to the rules of
paraxial imagery given in Chap. 2. This is another way of stating that
a lens without aberrations forms an image of the size and in the loca-
tion given by the equations for the paraxial or first-order region. We
shall measure the aberrations by the amount by which rays miss the
paraxial image point.

It can be seen that aberrations may be determined by calculating
the location of the paraxial image of an object point and then tracing
a large number of rays (by the exact trigonometrical ray-tracing equa-
tions of Chap. 10) to determine the amounts by which the rays depart
from the paraxial image point. Stated this baldly, the mathematical
determination of the aberrations of a lens which covered any reason-
able field at a real aperture would seem a formidable task, involving
an almost infinite amount of labor. However, by classifying the various
types of image faults and by understanding the behavior of each type,
the work of determining the aberrations of a lens system can be sim-
plified greatly, since only a few rays need be traced to evaluate each
aberration; thus the problem assumes more manageable proportions.

Seidel investigated and codified the primary aberrations and
derived analytical expressions for their determination. For this reason,
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the primary image defects are usually referred to as the Seidel
aberrations.

3.2 The Aberration Polynomial and the
Seidel Aberrations

With reference to Fig. 3.1, we assume an optical system with symme-
try about the optical axis so that every surface is a figure of rotation
about the optical axis. Because of this symmetry, we can, without any
loss of generality, define the object point as lying on the y axis; its dis-
tance from the optical axis is y � h. We define a ray starting from the
object point and passing through the system aperture at a point
described by its polar coordinates (s, �). The ray intersects the image
plane at the point x′, y′.

We wish to know the form of the equation which will describe the
image plane intersection coordinates y′ and x′ as a function of h, s, and
�; the equation will be a power series expansion. While it is impracti-
cal to derive an exact expression for other than very simple systems or
for more than a few terms of the power series, it is possible to deter-
mine the general form of the equation. This is simply because we have
assumed an axially symmetrical system. For example, a ray which
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Figure 3.1 A ray from the point y � h, (x � 0) in the object passes through the opti-
cal system aperture at a point defined by its polar coordinates, (s, �), and intersects
the image surface at x′, y′.



intersects the axis in object space must also intersect it in image space.
Every ray passing through the same axial point in object space and
also passing through the same annular zone in the aperture (i.e., with
the same value of s) must pass through the same axial point in image
space. A ray in front of the meridional (y, z) plane has a mirror-image
ray behind the meridional plane which is identical except for the
(reversed) signs of x′ and �. Similarly, rays originating from ±h in
the object and passing through corresponding upper and lower aper-
ture points must have identical x′ intersections and oppositely signed
y′ values. With this sort of logic one can derive equations such as the 
following:

y′ � A1s cos � � A2h

� B1s
3 cos � � B2s

2h(2 � cos 2�) � (3B3 � B4)sh2 cos � � B5h
3

� C1s
5 cos � � (C2 � C3 cos 2�)s4h � (C4 � C6 cos2 �)s3h2 cos �

� (C7 � C8 cos 2�)s2h3 � C10sh4 cos � � C12h
5 � D1s

7 cos � � ...
(3.1)

x′ � A1s sin �

� B1s
3 sin � � B2s

2h sin 2� � (B3� B4)sh2 sin �

� C1s
5 sin � � C3s

4h sin 2� � (C5 � C6 cos2 �)s3h2 sin �

� C9s
2h3 sin 2� � C11sh4 sin � � D1s

7 sin � � ... (3.2)

where An, Bn, etc., are constants, and h, s, and � have been defined
above and in Fig. 3.1.

Notice that in the A terms the exponents of s and h are unity. In the
B terms the exponents total 3, as in s3, s2h, sh2, and h3. In the C terms
the exponents total 5, and in the D terms, 7. These are referred to as
the first-order, third-order, and fifth-order terms, etc. There are 2 first-
order terms, 5 third-order, 9 fifth-order, and

� 1

nth-order terms. In an axially symmetrical system there are no even-
order terms; only odd-order terms may exist (unless we depart from
symmetry as, for example, by tilting a surface or introducing a toroidal
or other nonsymmetrical surface).

It is apparent that the A terms relate to the paraxial (or first-order)
imagery discussed in Chap. 2. A2 is simply the magnification (h′/h),
and A1 is a transverse measure of the distance from the paraxial focus
to our “image plane.” All the other terms in Eqs. 3.1 and 3.2 are called

(n � 3) (n � 5)
��

8
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transverse aberrations. They represent the distance by which the ray
misses the ideal image point as described by the paraxial imaging
equations of Chap. 2.

The B terms are called the third-order, or Seidel, or primary aberra-
tions. B1 is spherical aberration, B2 is coma, B3 is astigmatism, B4 is
Petzval, and B5 is distortion. Similarly, the C terms are called the fifth-
order or secondary aberrations. C1 is fifth-order spherical aberration;
C2 and C3 are linear coma; C4, C5, and C6 are oblique spherical aberra-
tion; C7, C8, and C9 are elliptical coma; C10 and C11 are Petzval and
astigmatism; and C12 is distortion.

The 14 terms in D are the seventh-order or tertiary aberrations; D1

is the seventh-order spherical aberration. A similar expression for
OPD, the wave front deformation, is given in Chap. 11.

As noted above, the Seidel aberrations of a system in monochromat-
ic light are called spherical aberration, coma, astigmatism, Petzval
curvature, and distortion. In this section we will define each aberra-
tion and discuss its characteristics, its representation, and its effect on
the appearance of the image. Each aberration will be discussed as if it
alone were present; obviously in practice one is far more likely to
encounter aberrations in combination than singly. The third-order
aberrations can be calculated using the methods given in Chap. 10.

Spherical aberration

Spherical aberration can be defined as the variation of focus with aper-
ture. Figure 3.2 is a somewhat exaggerated sketch of a simple lens
forming an “image” of an axial object point a great distance away.
Notice that the rays close to the optical axis come to a focus (intersect
the axis) very near the paraxial focus position. As the ray height at the
lens increases, the position of the ray intersection with the optical axis
moves farther and farther from the paraxial focus. The distance from
the paraxial focus to the axial intersection of the ray is called longitu-
dinal spherical aberration. Transverse, or lateral, spherical aberration
is the name given to the aberration when it is measured in the “verti-
cal” direction. Thus, in Fig. 3.2 AB is the longitudinal, and AC the
transverse spherical aberration of ray R.

Since the magnitude of the aberration obviously depends on the height
of the ray, it is convenient to specify the particular ray with which a cer-
tain amount of aberration is associated. For example, marginal spherical
aberration refers to the aberration of the ray through the edge or margin
of the lens aperture. It is often written as LAm or TAm.

Spherical aberration is determined by tracing a paraxial ray and a
trigonometric ray from the same axial object point and determining
their final intercept distances l′ and L′. In Fig. 3.2, l′ is distance OA

64 Chapter Three



and L′ (for ray R) is distance OB. The longitudinal spherical aberra-
tion of the image point is abbreviated LA′ and

LA′ � L′ � l′ (3.3)

Transverse spherical aberration is related to LA′ by the expression

TA′R � �LA′ tan U′R � �(L′ � l′) tan U′R (3.4)

where U′R is the angle the ray R makes with the axis. Using this sign
convention, spherical aberration with a negative sign is called under-
corrected spherical, since it is usually associated with simple uncor-
rected positive elements. Similarly, positive spherical is called
overcorrected and is generally associated with diverging elements.

The spherical aberration of a system is usually represented graphi-
cally. Longitudinal spherical is plotted against the ray height at the
lens, as shown in Fig. 3.3a, and transverse spherical is plotted against
the final slope of the ray, as shown in Fig. 3.3b. Figure 3.3b is called a
ray intercept curve. It is conventional to plot the ray through the top of
the lens on the right in a ray intercept plot regardless of the sign con-
vention used for ray slope angles.

For a given aperture and focal length, the amount of spherical aber-
ration in a simple lens is a function of object position and the shape, or
bending, of the lens. For example, a thin glass lens with its object at
infinity has a minimum amount of spherical at a nearly plano-convex
shape, with the convex surface toward the object. A meniscus shape,
either convex-concave or concave-convex has much more spherical
aberration. If the object and image are of equal size (each being two
focal lengths from the lens), then the shape which gives the minimum
spherical is equiconvex. Usually, a uniform distribution of the amount
that a ray is “bent” or deviated will minimize the spherical.
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Figure 3.2 A simple converging lens with undercorrected
spherical aberration. The rays farther from the axis are
brought to a focus nearer the lens.



The image of a point formed by a lens with spherical aberration is
usually a bright dot surrounded by a halo of light; the effect of spher-
ical on an extended image is to soften the contrast of the image and to
blur its details.

In general, a positive, converging lens or surface will contribute
undercorrected spherical aberration to a system, and a negative lens
or divergent surface, the reverse, although there are certain excep-
tions to this.

Figure 3.3 illustrated two ways to present spherical aberration, as
either a longitudinal or a transverse aberration. Equation 3.4 showed
the relation between the two. The same relationship is also appropri-
ate for astigmatism and field curvature (Sec. 3.2.3) and axial chro-
matic (Sec. 3.3). Note that coma, distortion, and lateral chromatic do
not have a longitudinal measure. All of the aberrations can also be
expressed as angular aberrations. The angular aberration is simply
the angle subtended from the second nodal (or in air, principal) point
by the transverse aberration. Thus

AA � (3.5)

Yet a fourth way to measure an aberration is by OPD, the departure of
the actual wave front from a perfect reference sphere centered on the
ideal image point, as discussed in Sec. 3.6 and Chap. 11.

The transverse measure of an aberration is directly related to the
size of the image blur. Graphing it as a ray intercept plot (e.g., Fig.
3.3b and Fig. 3.24) allows the viewer to identify the various types of
aberration afflicting the optical system. This is of great value to the

TA
�
s′
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Figure 3.3 Graphical representation of spherical aberration. 
(a) As a longitudinal aberration, in which the longitudinal
spherical aberration (LA′) is plotted against ray height (Y).
(b) As a transverse aberration, in which the ray intercept height
(H′) at the paraxial reference plane is plotted against the final
ray slope (tan U′).



lens designer, and the ray intercept plot of the transverse aberrations
is an almost universally used presentation of the aberrations. As dis-
cussed later (in Chap. 11), the OPD, or wave-front deformation, is the
most useful measure of image quality for well-corrected systems, and
a statement of the amount of the OPD is usually accepted as definitive
in this regard. The longitudinal presentation of the aberrations is most
useful in understanding field curvature and axial chromatic, especially
secondary spectrum.

Coma

Coma can be defined as the variation of magnification with aperture.
Thus, when a bundle of oblique rays is incident on a lens with coma,
the rays passing through the edge portions of the lens may be imaged
at a different height than those passing through the center portion. In
Fig. 3.4, the upper and lower rim rays A and B, respectively, intersect
the image plane above the ray P which passes through the center 
of the lens. The distance from P to the intersection of A and B is called
the tangential coma of the lens, and is given by

ComaT � H′AB � H′P (3.6)

where H′AB is the height from the optical axis to the intersection of the
upper and lower rim rays, and H′P is the height from the axis to 
the intersection of the ray P with the plane perpendicular to the axis
and passing through the intersection of A and B. The appearance of a
point image formed by a comatic lens is indicated in Fig. 3.5. Obviously
the aberration is named after the comet shape of the figure.

Figure 3.6 indicates the relationship between the position at which
the ray passes through the lens aperture and the location which it
occupies in the coma patch. Figure 3.6a represents a head-on view of
the lens aperture, with ray positions indicated by the letters A through
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Figure 3.4 In the presence of coma, the rays through the out-
er portions of the lens focus at a different height than the
rays through the center of the lens.



H and A′ through D′, with the primed rays in the inner circle. The
resultant coma patch is shown in Fig. 3.6b with the ray locations
marked with corresponding letters. Notice that the rays which formed
a circle on the aperture also form a circle in the coma patch, but as the
rays go around the aperture circle once, they go around the image cir-
cle twice in accord with the B2 terms in Eqs. 3.1 and 3.2. The primed
rays of the smaller circle in the aperture also form a correspondingly
smaller circle in the image, and the central ray P is at the point of the
figure. Thus the comatic image can be viewed as being made up of a
series of different-sized circles arranged tangent to a 60° angle. The
size of the image circle is proportional to the square of the diameter of
the aperture circle.
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Figure 3.5 The coma patch. The
image of a point source is spread
out into a comet-shaped flare.

Figure 3.6 The relationship between the position of a ray
in the lens aperture and its position in the coma patch. 
(a) View of the lens aperture with rays indicated by letters.
(b) The letters indicate the positions of the corresponding
rays in the image figure. Note that the diameters of the
circles in the image are proportional to the square of the
diameters in the aperture.



In Fig. 3.6b the distance from P to AB is the tangential coma of Eq.
3.6. The distance from P to CD is called the sagittal coma and is one-
third as large as the tangential coma. About half of all the energy in
the coma patch is concentrated in the small triangular area between P
and CD; thus the sagittal coma is a somewhat better measure of the
effective size of the image blur than is the tangential coma.

Coma is a particularly disturbing aberration since its flare is non-
symmetrical. Its presence is very detrimental to accurate determina-
tion of the image position since it is much more difficult to locate the
“center of gravity” of a coma patch than for a circular blur such as that
produced by spherical aberration.

Coma varies with the shape of the lens element and also with the
position of any apertures or diaphragms which limit the bundle of rays
forming the image. In an axially symmetrical system there is no coma
on the optical axis. The size of the coma patch varies linearly with its
distance from the axis. The offense against the Abbe sine condition
(OSC) is discussed in Chap. 10.

Astigmatism and field curvature

In the preceding section on coma, we introduced the terms “tangential”
and “sagittal”; a fuller discussion of these terms is appropriate at this
point. If a lens system is represented by a drawing of its axial section,
rays which lie in the plane of the drawing are called meridional or tan-
gential rays. Thus rays A, P, and B of Fig. 3.6 are tangential rays.
Similarly, the plane through the axis is referred to as the meridional
or tangential plane, as may any plane through the axis.

Rays which do not lie in a meridional plane are called skew rays. The
oblique meridional ray through the center of the aperture of a lens sys-
tem is called the principal, or chief, ray. If we imagine a plane passing
through the chief ray and perpendicular to the meridional plane, then
the (skew) rays from the object which lie in this sagittal plane are
sagittal rays. Thus in Fig. 3.6 all the rays except A, A′, P, B′, and B
are skew rays, and the sagittal rays are C, C′, D′, and D.

As shown in Fig. 3.7, the image of a point source formed by an oblique
fan of rays in the tangential plane will be a line image; this line, called
the tangential image, is perpendicular to the tangential plane; i.e., it lies
in the sagittal plane. Conversely, the image formed by the rays of the
sagittal fan is a line which lies in the tangential plane.

Astigmatism occurs when the tangential and sagittal (sometimes
called radial) images do not coincide. In the presence of astigmatism,
the image of a point source is not a point, but takes the form of two sep-
arate lines as shown in Fig. 3.7. Between the astigmatic foci the image
is an elliptical or circular blur. (Note that if diffraction effects are sig-
nificant, this blur may take on a square or diamond characteristic.)
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Unless a lens is poorly made, there is no astigmatism when an axial
point is imaged. As the imaged point moves further from the axis, the
amount of astigmatism gradually increases. Off-axis images seldom lie
exactly in a true plane; when there is primary astigmatism in a lens
system, the images lie on curved surfaces which are paraboloid in
shape. The shape of these image surfaces is indicated for a simple lens
in Fig. 3.8.

The amount of astigmatism in a lens is a function of the power and
shape of the lens and its distance from the aperture or diaphragm
which limits the size of the bundle of rays passing through the lens. In
the case of a simple lens or mirror whose own diameter limits the size
of the ray bundle, the astigmatism is equal to the square of the dis-
tance from the axis to the image (i.e., the image height) divided by the
focal length of the element, i.e., �h2/f.

Every optical system has associated with it a sort of basic field cur-
vature, called the Petzval curvature, which is a function of the index
of refraction of the lens elements and their surface curvatures. When
there is no astigmatism, the sagittal and tangential image surfaces
coincide with each other and lie on the Petzval surface. When there is
primary astigmatism present, the tangential image surface lies three
times as far from the Petzval surface as the sagittal image; note that
both image surfaces are on the same side of the Petzval surface, as
indicated in Fig. 3.8.

When the tangential image is to the left of the sagittal image (and
both are to the left of the Petzval surface) the astigmatism is called neg-
ative, undercorrected, or inward-(toward the lens) curving. When the
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Figure 3.7 Astigmatism.



order is reversed, the astigmatism is overcorrected, or backward-curv-
ing. In Fig. 3.8, the astigmatism is undercorrected and all three surfaces
are inward-curving. It is possible to have overcorrected (backward curv-
ing) Petzval and undercorrected (inward) astigmatism, or vice versa.

Positive lenses introduce inward curvature of the Petzval surface to
a system, and negative lenses introduce backward curvature. The
Petzval curvature (i.e., the longitudinal departure of the Petzval sur-
face from the ideal flat image surface) of a thin simple element is equal
to one-half the square of the image height divided by the focal length
and index of the element, �h2/2nf. Note that “field curvature” means
the longitudinal departure of the focal surfaces from the ideal image
surface (which is usually flat) and not the reciprocal of the radius of
the image surface.

Distortion

When the image of an off-axis point is formed farther from the axis or
closer to the axis than the image height given by the paraxial expres-
sions of Chap. 2, the image of an extended object is said to be distort-
ed. The amount of distortion is the displacement of the image from the
paraxial position, and can be expressed either directly or as a percent-
age of the ideal image height, which, for an infinitely distant object, is
equal to h′ � f tan �.

The amount of distortion ordinarily increases as the image size
increases; the distortion itself usually increases as the cube of the
image height (percentage distortion increases as the square). Thus, if
a centered rectilinear object is imaged by a system afflicted with dis-
tortion, it can be seen that the images of the corners will be displaced
more (in proportion) than the images of the points making up the
sides. Figure 3.9 shows the appearance of a square figure imaged by a
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Figure 3.8 The primary astig-
matism of a simple lens. The
tangential image is three times
as far from the Petzval surface
as the sagittal image. Note that
the figure is to scale.



lens system with distortion. In Fig. 3.9a the distortion is such that the
images are displaced outward from the correct position, resulting in a
flaring or pointing of the corners. This is overcorrected, or pincushion,
distortion. In Fig. 3.9b the distortion is of the opposite type and the
corners of the square are pulled inward more than the sides; this is
negative, or barrel, distortion.

A little study of the matter will show that a system which produces
distortion of one sign will produce distortion of the opposite sign when
object and image are interchanged. Thus a camera lens with barrel
distortion will have pincushion distortion if used as a projection lens
(i.e., when the film is replaced by a slide). Obviously if the same lens
is used both to photograph and to project the slide, the projected image
will be rectilinear (free of distortion) since the distortion in the slide
will be canceled out upon projection.

3.3 Chromatic Aberrations

Because of the fact that the index of refraction varies as a function of the
wavelength of light, the properties of optical elements also vary with
wavelength. Axial chromatic aberration is the longitudinal variation of
focus (or image position) with wavelength. In general, the index of
refraction of optical materials is higher for short wavelengths than for
long wavelengths; this causes the short wavelengths to be more strong-
ly refracted at each surface of a lens so that in a simple positive lens, for
example, the blue light rays are brought to a focus closer to the lens
than the red rays. The distance along the axis between the two focus
points is the longitudinal axial chromatic aberration. Figure 3.10 shows
the chromatic aberration of a simple positive element. When the short-
wavelength rays are brought to a focus to the left of the long-wavelength
rays, the chromatic is termed undercorrected, or negative.

The image of an axial point in the presence of chromatic aberration
is a central bright dot surrounded by a halo. The rays of light which
are in focus, and those which are nearly in focus, form the bright dot.
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Figure 3.9 Distortion. (a) Positive,
or pincushion, distortion. 
(b) Negative, or barrel, distor-
tion. The sides of the image are
curved because the amount of
distortion varies as the cube of
the distance from the axis. Thus,
in the case of a square, the cor-
ners are distorted 2�2� as much
as the center of the sides.



The out-of-focus rays form the halo. Thus, in an undercorrected visual
instrument, the image would have a yellowish dot (formed by the
orange, yellow, and green rays) and a purplish halo (due to the red and
blue rays). If the screen on which the image is formed is moved toward
the lens, the central dot will become blue; if it is moved away, the cen-
tral dot will become red.

When a lens system forms images of different sizes for different
wavelengths, or spreads the image of an off-axis point into a rainbow,
the difference between the image heights for different colors is called
lateral color, or chromatic difference of magnification. In Fig. 3.11 a
simple lens with a displaced diaphragm is shown forming an image of
an off-axis point. Since the diaphragm limits the rays which reach the
lens, the ray bundle from the off-axis point strikes the lens above 
the axis and is bent downward as well as being brought to a focus. The
blue rays are bent downward more than the red and thus form their
image nearer the axis.

The chromatic variation of index also produces a variation of the
monochromatic aberrations discussed in Sec. 3.2. Since each aberration
results from the manner in which the rays are bent at the surfaces of
the optical system, it is to be expected that, since rays of different col-
or are bent differently, the aberrations will be somewhat different for
each color. In general this proves to be the case, and these effects are of
practical importance when the basic aberrations are well corrected.

3.4 The Effect of Lens Shape and Stop
Position on the Aberrations

A consideration of either the thick-lens focal length equation

� (n � 1) � � � �t
�
R1R2

n � 1
�

n
1

�
R2

1
�
R1

1
�
f

Aberrations 73

Figure 3.10 The undercorrected longitudinal chromatic aberration of a simple
lens is due to the blue rays undergoing a greater refraction than the red rays.



or the thin-lens focal length equation

� (n � 1) � � � � (n � 1) (C1 � C2)

reveals that for a given index and thickness, there is an infinite number
of combinations of R1 and R2 which will produce a given focal length.
Thus a lens of some desired power may take on any number of different
shapes or “bendings.” The aberrations of the lens are changed marked-
ly as the shape is changed; this effect is the basic tool of optical design.

As an illustrative example, we will consider the aberrations of a thin
positive lens made of borosilicate crown glass with a focal length of 100
mm and a clear aperture of 100 mm (a speed of f/10) which is to image
an infinitely distant object over a field of view of ±17°. A typical borosil-
icate crown is 517:642, which has an index of 1.517 for the helium d
line (	 � 5876 Å), an index of 1.51432 for C light (	 � 6563 Å), and an
index of 1.52238 for F light (	 � 4861 Å).

(The aberration data presented in the following paragraphs were
calculated by means of the thin-lens third-order aberration equations
of Chap. 10.)

If we first assume that the stop or limiting aperture is in coincidence
with the lens, we find that several aberrations do not vary as the lens
shape is varied. Axial chromatic aberration is constant at a value of
�1.55 mm (undercorrected); thus the blue focus (F light) is 1.55 mm
nearer the lens than the red focus (C light). The astigmatism and field
curvature are also constant. At the edge of the field (30 mm from the
axis) the sagittal focus is 7.5 mm closer to the lens than the paraxial
focus, and the tangential focus is 16.5 mm inside the paraxial focus.
Two aberrations, distortion and lateral color, are zero when the stop is
at the lens.

1
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�
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f
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Figure 3.11 Lateral color, or chromatic difference of magnification,
results in different-sized images for different wavelengths.



Spherical aberration and coma, however, vary greatly as the lens
shape is changed. Figure 3.12 shows the amount of these two aberra-
tions plotted against the curvature of the first surface of the lens.
Notice that coma varies linearly with lens shape, taking a large posi-
tive value when the lens is a meniscus with both surfaces concave
toward the object. As the lens is bent through plano-convex, convex-
plano, and convex meniscus shapes, the amount of coma becomes more
negative, assuming a zero value near the convex-plano form.

The spherical aberration of this lens is always undercorrected; its
plot has the shape of a parabola with a vertical axis. Notice that the
spherical aberration reaches a minimum (or more accurately, a maxi-
mum) value at approximately the same shape for which the coma is
zero. This, then, is the shape that one would select if the lens were to
be used as a telescope objective to cover a rather small field of view.
Note that if both object and image are “real” (i.e., not virtual), the
spherical aberration of a positive lens is always negative (undercor-
rected).

Let us now select a particular shape for the lens, say, C1 � �0.02
and investigate the effect of placing the stop away from the lens, as
shown in Fig. 3.13. The spherical and axial chromatic aberrations are
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Figure 3.12 Spherical aberration and coma as a function of lens
shape. Data plotted are for a 100-mm focal length lens (with
the stop at the lens) at f/10 covering ±17° field.



completely unchanged by shifting the stop, since the axial rays strike
the lens in exactly the same manner regardless of where the stop is
located. The lateral color and distortion, however, take on positive val-
ues when the stop is behind the lens and negative when it is before the
lens. Figure 3.14 shows a plot of lateral color, distortion, coma, and
tangential field curvature as a function of the stop position. The most
pronounced effects of moving the stop are found in the variations of
coma and astigmatism. As the stop is moved toward the object, the
coma decreases linearly with stop position, and has a zero value when
the stop is about 18.5 mm in front of the lens. The astigmatism
becomes less negative so that the position of the tangential image
approaches the paraxial focal plane. Since astigmatism is a quadratic
function of stop position, the tangential field curvature (xt) plots as a
parabola. Notice that the parabola has a maximum at the same stop
position for which the coma is zero. This is called the natural position
of the stop, and for all lenses with undercorrected primary spherical
aberration, the natural, or coma-free, stop position produces a more
backward curving (or less inward curving) field than any other stop
position.

Figure 3.12 showed the effect of lens shape with the stop fixed in
contact with the lens, and Fig. 3.14 showed the effect of stop position
with the lens shape held constant. There is a “natural” stop position
for each shape of the simple lens we are considering. In Fig. 3.15, the
aberrations of the lens have again been plotted against the lens shape;
however, in this figure, the aberration values are those which occur
when the stop is in the natural position. Thus, for each bending the
coma has been removed by choosing this stop position, and the field is
as far backward curving as possible.

Notice that the shape which produces minimum spherical aberra-
tion also produces the maximum field curvature, so that this shape,
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Figure 3.13 The aperture stop
away from the lens. Notice that
the oblique ray bundle passes
through an entirely different
part of the lens when the stop is
in front of the lens than when it
is behind the lens.



which gives the best image near the axis, is not suitable for wide field
coverage. The meniscus shapes at either side of the figure represent a
much better choice for a wide field, for although the spherical aberra-
tion is much larger at these bendings, the field is much more nearly
flat. This is the type of lens used in inexpensive cameras at speeds of
f/11 or f/16.

3.5 Aberration Variation with Aperture 
and Field

In the preceding section, we considered the effect of lens shape and
aperture position on the aberrations of a simple lens, and in that dis-
cussion we assumed that the lens operated at a fixed aperture of f/10
(stop diameter of 10 mm) and covered a fixed field of ±17° (field diam-
eter of 60 mm). It is often useful to know how the aberrations of such
a lens vary when the size of the aperture or field is changed.

Figure 3.16 lists the relationships between the primary aberra-
tions and the semi-aperture y (in column one) and the image height
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Figure 3.14 Effect of shifting the stop position on the aberrations of a sim-
ple lens. The arrow indicates the “natural” stop position where coma is
zero. (efl � 100, C1 � �0.02, speed � f/10, field � ±17°.)



h (in column two). To illustrate the use of this table, let us assume
that we have a lens whose aberrations are known; we wish to deter-
mine the size of the aberrations if the aperture diameter is increased
by 50 percent and the field coverage reduced by 50 percent. The new
y will be 1.5 times the original, and the new h will be 0.5 times the
original.

Since longitudinal spherical aberration is shown to vary with y2, the
1.5 times increase in aperture will cause the spherical to be (1.5)2, or
2.25, times as large. Similarly transverse spherical, which varies as y3,
will be (1.5)3, or 3.375, times larger (as will the image blur due to
spherical).

Coma varies as y2 and h; thus, the coma will be (1.5)2 � 0.5, or 1.125,
times as large. The Petzval curvature and astigmatism, which vary
with h2, will be reduced to (0.5)2, or 0.25, of their previous value, while
the blurs due to astigmatism or field curvature will be 1.5(0.5)2, or
0.375, of their original size.

The aberrations of a lens also depend on the position of the object
and image. A lens which is well corrected for an infinitely distant
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Figure 3.15 The variation of the aberrations with lens shape when the
stop is located in the “natural” (coma free) position for each shape. Data
is for 100-mm f/10 lens covering ±17° field, made from BSC-2 glass
(517:645).



object, for example, may be very poorly corrected if used to image a
nearby object. This is because the ray paths and incidence angles
change as the object position changes.

It should be obvious that if all the dimensions of an optical system are
scaled up or down, the linear aberrations are also scaled in exactly
the same proportion. Thus if the simple lens used as the example in
Sec. 3.4 were increased in focal length to 200 mm, its aperture
increased to 20 mm, and the field coverage increased to 120 mm, then
the aberrations would all be doubled. Note, however, that the speed, or
f/number, would remain at f/10 and the angular coverage would
remain at ±17 . The percentage distortion would not be changed.

Aberrations are occasionally expressed as angular aberrations. For
example, the transverse spherical aberration of a system subtends an
angle from the second principal point of the system; this angle is the
angular spherical aberration. Note that the angular aberrations are
not changed by scaling the size of the optical system.

3.6 Optical Path Difference (Wave Front
Aberration)

Aberrations can also be described in terms of the wave nature of light.
In Chap. 1, it was pointed out that the light waves converging to form
a “perfect” image would be spherical in shape. Thus when aberrations
are present in a lens system, the waves converging on an image point
are deformed from the ideal shape (which is a sphere centered on the
image point). For example, in the presence of undercorrected spherical
aberration the wave front is curled inward at the edges, as shown in
Fig. 3.17. This can be understood if we remember that a ray is the path
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Figure 3.16 The variation of the primary aberrations with aperture and field.



of a point on the wave front and that the ray is also normal to the wave
front. Thus, if the ray is to intersect the axis to the left of the paraxial
focus, the section of the wave front associated with the ray must be
curled inward. The wave front shown is “ahead” of the reference
sphere; the distance by which it is ahead is called the optical path dif-
ference, or OPD, and is customarily expressed in units of wavelengths.
The wave fronts associated with axial aberrations are symmetrical
figures of rotation, in contrast to the off-axis aberrations such as coma
and astigmatism. For example, the wave front for astigmatism would
be a section of a torus (the outer surface of a doughnut) with different
radii in the prime meridians. For off-axis imagery, the reference
sphere is chosen to pass through the center of the exit pupil (in some
calculations, the reference sphere has an infinite radius, for conve-
nience in computing).

3.7 Aberration Correction and Residuals

Section 3.4 indicated two methods which are used to control aberra-
tions in simple optical systems, namely lens shape and stop position.
For many applications a higher level of correction is needed, and it is
then necessary to combine optical elements with aberrations of oppo-
site signs so that the aberrations contributed to the system by one ele-
ment are cancelled out, or corrected, by the others. A typical example
is the achromatic doublet used for telescope objectives, shown in Fig.
3.18. A single positive element would be afflicted with both undercor-
rected spherical aberration and undercorrected chromatic aberration.
In a negative element, in the other hand, both aberrations are over-
corrected. In the doublet a positive element is combined with a less
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Figure 3.17 The optical path difference (OPD) is the dis-
tance between the emerging wave front and a reference
sphere (centered in the image plane) which coincides
with the wave front at the axis. The OPD is thus the dif-
ference between the marginal and axial paths through
the system for an axial point.



powerful negative element in such a way that the aberrations of each
balance out. The positive lens is made of a (crown) glass with a low
chromatic dispersion, and the negative element of a (flint) glass with
a high dispersion. Thus, the negative element has a greater amount of
chromatic aberration per unit of power, by virtue of its greater disper-
sion, than the crown element. The relative powers of the elements are
chosen so that the chromatic exactly cancels while the focusing power
of the crown element dominates.

The situation with regard to spherical aberration is quite analogous
except that element power, shape, and index of refraction are involved
instead of power and dispersion as in chromatic. If the index of the
negative element is higher than the positive, the inner surface is diver-
gent, and will contribute overcorrected spherical to balance the under-
correction of the outer surfaces.

Aberration correction usually is exact only for one zone of the aper-
ture of a lens or for one angle of obliquity, because the aberrations of
the individual elements do not balance out exactly for all zones and
angles. Thus, while the spherical aberration of a lens may be correct-
ed to zero for the rays through the edge of the aperture, the rays
through the other zones of the aperture usually do not come to a focus
at the paraxial image point. A typical longitudinal spherical aberration
plot for a “corrected” lens is shown in Fig. 3.19. Notice that the rays
through only one zone of the lens intersect the paraxial focus. Rays
through the smaller zones focus nearer the lens system and have
undercorrected spherical; rays above the corrected zone show overcor-
rected spherical. The undercorrected aberration is called residual, or
zonal, aberration; Fig. 3.19 would be said to show an undercorrected
zonal aberration. This is the usual state of affairs for most optical sys-
tems. Occasionally a system is designed with an overcorrected spheri-
cal zone, but this is unusual.

Chromatic aberration has residuals which take two different forms.
The correction of chromatic aberration is accomplished by making the
foci of two different wavelengths coincide. However, due to the nature
of the great majority of optical materials, the nonlinear dispersion
characteristics of the positive and negative elements used in an achro-
mat do not “match up,” so that the focal points of other wavelengths do
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Figure 3.18 Achromatic doublet
telescope objective. The powers
and shapes of the two elements
are so arranged that each can-
cels the aberrations of the other.



not coincide with the common focal point of the two selected colors.
This difference in focal distance is called secondary spectrum. Figure
3.20 shows a plot of back focal distance versus wavelength for a typi-
cal achromatic lens, in which the rays for C light (red) and F light
(blue) are brought to a common focus. The yellow rays come to a focus
about 1/2400th of the focal length ahead of the C-F focal point.

The second major chromatic residual may be regarded as a variation
of chromatic aberration with ray height, or as a variation of spherical
aberration with wavelength, and is called spherochromatism. In ordi-
nary spherochromatism, the spherical aberration in blue light is over-
corrected and the spherical in red light is undercorrected (when the
spherical aberration for the yellow light is corrected). Figure 3.21 is a
spherical aberration plot in three wavelengths for a typical achromat-
ic doublet of large aperture. The correction has been adjusted so that
the red and blue rays striking the lens at a height of 0.707 of the mar-
ginal ray height are brought to a common focus. The distance between
the yellow focus and the red-blue focus at this height is, of course, the
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Figure 3.19 Plot of longitudinal
spherical aberration versus ray
height for a “corrected” lens. 
For most lenses, the maximum
undercorrection occurs for the
ray whose height is 0.707 that of
the ray with zero spherical.

Figure 3.20 The secondary spec-
trum of a typical doublet achro-
mat, corrected so that C and F
light are joined at a common
focus. The distance from the
common focus of C and F to the
minimum of the curve (in the
yellow green at about 0.55 �) is
called the secondary spectrum.



secondary spectrum discussed above. Notice that above this 0.707 zone
the chromatic is overcorrected and below it is undercorrected so that
one half of the area of the lens aperture is overconnected and one half
undercorrected.

The other aberrations have similar residuals. Coma may be com-
pletely corrected for a certain field angle, but will often be overcor-
rected above this obliquity and undercorrected below it. Coma may
also undergo a change of sign with aperture, with the central part of
the aperture overcorrected and the outer zone undercorrected.

Astigmatism usually varies markedly with field angle. Figure 3.22
shows a plot of the sagittal and tangential field curvatures for a typi-
cal photographic anastigmat, in which the astigmatism is zero for one
zone of the field. This point is called the node, and typically the two
focal surfaces separate quite rapidly beyond the node.

3.8 Ray Intercept Curves and the “Orders”
of Aberrations

When the image plane intersection heights of a fan of meridional rays
are plotted against the slope of the rays as they emerge from the lens,
the resultant curve is called a ray intercept curve or an H′–tan U′
curve. The shape of the intercept curve not only indicates the amount
of spreading or blurring of the image directly, but also can serve to
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Figure 3.21 Spherochromatism. The longitudinal aber-
ration of a “corrected” lens is shown for three wave-
lengths. The marginal spherical for yellow light is
corrected but is overcorrected for blue light and under-
corrected for red. The chromatic aberration is corrected
at the zone but is overcorrected above it and undercor-
rected below. A transverse plot of these aberrations is
shown in Fig. 3.24k.



indicate which aberrations are present. Figure 3.3b, for example,
shows simple undercorrected spherical aberration.

In Fig. 3.23, an oblique fan of rays from a distant object point is
brought to a perfect focus at point P. If the reference plane passes
through P, it is apparent that the H′–tan U′ curve will be a straight
horizontal line. However, if the reference plane is behind P (as shown)
then the ray intercept curve becomes a tilted straight line since the
height, H′, decreases as tan U′ decreases. Thus it is apparent that
shifting the reference plane (or focusing the system) is equivalent to a
rotation of the H′–tan U′ coordinates. A valuable feature of this type of
aberration representation is that one can immediately assess the
effects of refocusing the optical system by a simple rotation of the
abscissa of the figure. Notice that the slope of the line (
H′/
 tan U′)
is exactly equal to the distance (�) from the reference plane to the point
of focus, so that for an oblique ray fan the tangential field curvature is
equal to the slope of the ray intercept curve.

The accepted convention for plotting the ray intercepts is that 
(1) they are plotted for positive image heights (i.e., above the axis) and
(2) that the ray through the top of the lens is plotted at the right end
of the plot. For compound systems, where the image is relayed by a
second component, the ray plotted to the right is the one with the most
negative slope, i.e., the one through the bottom of the first component.
The result of this is that the sign of the aberrations shown in the ray
intercept plot can be instantly recognized. For example, the plot for
undercorrected spherical always curves down at the right end and up
at the left, and a line connecting the ends of a plot showing positive
coma always passes above the point representing the principal ray.
Note that in an H′–tan U′ plot, this plotting convention violates the
convention for the sign of the ray slope. This seeming contradiction is
the result of the change from the historical optical ray slope sign con-
vention which occurred several decades ago.
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Figure 3.22 Field curvature of a
photographic anastigmat. The
astigmatism has been corrected
for one zone of the field but is
overcorrected inside this zone
and undercorrected beyond it.



Figure 3.24 shows a number of intercept curves, each labeled with
the aberration represented. The generation of these curves can be
readily understood by sketching the ray paths for each aberration and
then plotting the intersection height and slope angle for each ray as a
point of the curve. Distortion is not shown in Fig. 3.24; it would be rep-
resented as a vertical displacement of the curve from the paraxial
image height h′. Lateral color would be represented by curves for two
colors which were vertically displaced from each other. The ray inter-
cept curves of Fig. 3.24 are generated by tracing a fan of meridional or
tangential rays from an object point and plotting their intersection
heights versus their slopes. The imagery in the other meridian can be
examined by tracing a fan of rays in the sagittal plane (normal to the
meridional plane) and plotting their x-coordinate intersection points
against their slopes in the sagittal plane (i.e., the slope relative to the
principal ray lying in the meridional plane). Note that Fig. 3.24k is for
the same lens as the longitudinal plot in Fig. 3.21.

It is apparent that the ray intercept curves which are “odd” func-
tions, that is, the curves which have a rotational or point symmetry
about the origin, can be represented mathematically by an equation of
the form

y � a � bx � cx3 � dx5 � ...

or

H′ � a � b tan U′ � c tan3 U′ � d tan5 U′ � ... (3.7)
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Figure 3.23 The ray intercept curve (H′ – tan U′) of a point
which does not lie in the reference plane is a tilted straight
line. The slope of the line (
H′/
 tan U′) is mathematically
identical to �, the distance from the reference plane to the
point of focus P. Note that � is equal to XT, the tangential
field curvature, when the paraxial focal plane is chosen as
the reference plane.



All the ray intercept curves for axial image points are of this type.
Since the curve for an axial image must have H′ � 0 when tan U′ � 0,
it is apparent that the constant a must be a zero. It is also apparent
that the constant b for this case represents the amount the reference
plane is displaced from the paraxial image plane. Thus the curve for
lateral spherical aberration plotted with respect to the paraxial focus
can be expressed by the equation

TA′ � c tan3 U′ � d tan5 U′ � e tan7 U′ � ... (3.8)

It is, of course, possible to represent the curve by a power series expan-
sion in terms of the final angle U′, or sin U′, or the ray height at the lens
(Y ), or even the initial slope of the ray at the object (U0) instead of tan U′.
The constants will, of course, be different for each.

For simple uncorrected lenses the first term of Eq. 3.8 is usually
adequate to describe the aberration. For the great majority of 
“corrected” lenses the first two terms are dominant; in a few cases

86 Chapter Three

Figure 3.24 The ray intercept
plots for various aberrations.
The ordinate for each curve is H,
the height at which the ray
intersects the (paraxial) image
plane. The abscissa is tan U, the
final slope of the ray with
respect to the optical axis. Note
that it is conventional to plot the
ray through the top of the lens
at the right of the figure, and
that curves for image points
above the axis are customarily
shown. [Figure continues with
parts (d) to (k).]
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Figure 3.24 (Continued)



three terms (and rarely four) are necessary to satisfactorily represent
the aberration. As examples, Figs. 3.3, 3.24a, and 3.24b can be repre-
sented by TA′ � c tan3 U′, and this type of aberration is called third-
order spherical. Figure 3.24c, however, would require two terms of the
expansion to represent it adequately; thus TA′ � c tan3 U′ � d tan5 U′.
The amount of aberration represented by the second term is called the
fifth-order aberration. Similarly, the aberration represented by the
third term of Eq. 3.8 is called the seventh-order aberration. The fifth-,
seventh-, ninth-, etc., order aberrations are collectively referred to as
higher-order aberrations.

As will be shown in Chap. 10, it is possible to calculate the amount
of the primary, or third-order, aberrations without trigonometric ray-
tracing, that is, by means of data from a paraxial raytrace. This type
of aberration analysis is called third-order theory. The name “first-
order optics” given to that part of geometrical optics devoted to locat-
ing the paraxial image is also derived from this power series
expansion, since the first-order term of the expansion results purely
from a longitudinal displacement of the reference plane from the
paraxial focus.

Notes on the interpretation of ray 
intercept plots

The ray intercept plot is subject to a number of interesting interpreta-
tions. It is immediately apparent that the top-to-bottom extent of the plot
gives the size of the image blur. Also, a rotation of the horizontal (abscis-
sa) lines of the graph is equivalent to a refocusing of the image and can
be used to determine the effect of refocusing on the size of the blur.

Figure 3.23 shows that the ray intercept plot for a defocused image
is a sloping line. If we consider the slope of the curve at any point on
an H–tan U ray intercept plot, the slope is equal to the defocus of a
small-diameter bundle of rays centered about a ray represented by
that point. In other words, this would represent the focus of the rays
passing through a pinhole aperture which was so positioned as to pass
the rays at that part of the H–tan U plot. Similarly, since shifting an
aperture stop along the axis is, for an oblique bundle of rays, the equiv-
alent of selecting one part or another of the ray intercept plot, one can
understand why shifting the stop can change the field curvature, as
discussed in Section 3.4.

The OPD (optical path difference) or wave-front aberration can be
derived from an H–tan U ray intercept plot. The area under the curve
between two points is equal to the OPD between the two rays which
correspond to the two points. Ordinarily, the reference ray for OPD is
either the optical axis or the principal ray (for an oblique bundle).
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Thus the OPD for a given ray is usually the area under the ray inter-
cept plot between the center point and the ray.

Mathematically speaking, then, the OPD is the integral of the
H–tan U plot and the defocus is the first derivative. The coma is relat-
ed to the curvature or second derivative of the plot, as a glance at Fig.
3.24d will show.

It should be apparent that a more general ray intercept plot for a
given object point can be considered as a power series expansion of the
form

H′ � h � a � bx � cx2 � dx3 � ex4 � fx5 � ... (3.9)

where h is the paraxial image height, a is the distortion, and x is the
aperture variable (e.g., tan U′). Then the art of interpreting a ray
intercept plot becomes analogous to decomposing the plot into its var-
ious terms. For example, cx2 and ex4 represent third- and fifth-order
coma, while dx3 and fx5 are the third- and fifth-order spherical. The bx
term is due to a defocusing from the paraxial focus and could be due to
curvature of field. Note that the constants a, b, c, etc., will be different
for points of differing distances from the axis. For the primary aberra-
tions, the constants will vary according to the table of Fig. 3.16, and in
general per Eqs. 3.1 and 3.2.
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Exercises

1 The longitudinal spherical aberration of two rays which have been traced
through a system is �1.0 and �0.5; the ray slopes (tan U�) are �0.5 and
�0.35, respectively. What are the transverse aberrations (a) in the paraxial
plane, and (b) in a plane 0.2 before the paraxial plane?

ANSWER: (a) �0.5, �0.175; (b) �0.4, �0.105

2 A lens has comaT � 1. Plot the focal plane intercepts of 12 rays equally
spaced around (a) the marginal zone, (b) the 0.707 zone, and (c) the 0.5 zone
(see Fig. 3.6).
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3 A certain type of lens has the following primary aberrations at a focal
length of 100, an aperture of 10, and a field of ±5°: longitudinal spherical �
1.0; comaT � 1.0; XT � 1.0. What are the aberrations of this type of lens when:
(a) f � 200, aperture � 10, field � ±2.50? (b) f � 50, aperture � 10, field �
±10°?

ANSWER: (a) LA � 0.5, ComaT � 0.25, XT � 0.5, (b) LA � 2.0, ComaT � 4.0, XT

� 2.0

4 Plot the ray intercept curve for a lens with transverse spherical, comaT,
and XT, each equal to 1.0. Assume third-order aberrations and also that tan
U′m � 1.0.
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Prisms and Mirrors

4.1 Introduction

In most optical systems, prisms serve one of two major functions. In
spectral instruments (spectroscopes, spectrographs, spectrophotome-
ters, etc.) their function is to disperse the light or radiation; that is, to
separate the different wavelengths. In other applications, prisms are
used to displace, deviate, or reorient a beam of light or an image. In
this type of use, the prism is carefully arranged so that it will not sep-
arate the different colors.

4.2 Dispersing Prisms

In a typical dispersing prism, as shown in Fig. 4.1, a light ray strikes
the first surface at an angle of incidence I1 and is refracted downward,
making an angle of refraction I′1 with the normal to the surface. The
ray is thus deviated through an angle of (I1 � I′1) at this surface. At 
the second surface the ray is deviated through an angle (I′2 � I2), so the
total deviation of the ray is given by

D � (I1 � I′1) � (I′2 � I2) (4.1)

From the geometry of the figure it can be seen that angle I2 is equal
to (A � I′1), where A is the vertex angle of the prism; making this sub-
stitution in Eq. 4.1, we get

D � I1 � I′2 � A (4.2)
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To compute the deviation produced by the prism we can readily
determine the angles in Eq. 4.2 by Snell’s law (Eq. 1.3) as follows
(where n is the prism index):

sin I′1 � sin I1 (4.3)

I2 � A � I′1 (4.4)

sin I′2 � n sin I2 (4.5)

While it is ordinarily much more convenient to calculate the devia-
tion step by step, using the equations above, it is possible to combine
them into a single expression for D, in terms of I1, A, and n as follows:

D � I1 � A � arcsin [ (n2 � sin2 I1)
1/2 sin A � cos A sin I1] (4.6)

It is apparent that the deviation is a function of the prism index and
that the deviation will be increased as the index is raised. For optical
materials, the index of refraction is higher for short wavelengths (blue
light) than for long wavelengths (red light). Therefore, the deviation
angle will be greater for blue light than red, as indicated in Fig. 4.2.
This variation of the deviation angle with wavelength is called the dis-
persion of the prism. An expression for the dispersion can be found by
differentiating the preceding equations with respect to the index n,
assuming that I1 is constant, yielding,

dD � dn (4.7)

The angular dispersion with respect to wavelength is simply dD/d	
and is obtained by dividing both sides of Eq. 4.7 by d	. The resulting
dn/d	 term on the right is the index dispersion of the prism material.

4.3 The “Thin” Prism

If all the angles involved in the prism are very small, we can, as in the
paraxial case for lenses, substitute the angle itself for its sine. This
case occurs when the prism angle A is small and when the ray is

cos I2 tan I′1 � sin I2���
cos I′2

1
�
n
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Figure 4.1 The deviation of a
light ray by a refracting prism.



almost at normal incidence to the prism faces. Under these conditions,
we can write

i′1 � 

i2 � A � i′1 � A �

i′2 � ni2 � nA � i1

D � i1 � i′2 � A � i1 � nA � i1 � A

and finally

D � A (n � 1) (4.8a)

If the prism angle A is small but the angle of incidence I is not small,
we get the following approximate expression for D (which neglects
powers of I larger than 3).

D � A (n � 1) �1 � � . . .� (4.8b)

These expressions are of great utility in evaluating the effects of a
small prismatic error in the construction of an optical system since it
allows the resultant deviation of the light beam to be determined quite
readily.

The dispersion of a “thin” prism is obtained by differentiating Eq.
4.8a with respect to n, which gives dD � Adn. If we substitute A from
Eq. 4.8a, we get

dD � D (4.9)

Now the fraction (n � 1)/
n is one of the basic numbers used to char-
acterize optical materials. It is called the reciprocal relative dispersion,

dn
�
(n � 1)

I2 (n � 1)
��

2n

i1�
n

i1�
n
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Figure 4.2 The dispersion of white light into its component
wavelengths by a refracting prism (highly exaggerated).



Abbe V number, or V-value. Ordinarily n is taken as the index for the
helium d line (0.5876 �m) and 
n is the index difference between the
hydrogen F(0.4861 �m) and C(0.6563 �m) lines, and the V-value is giv-
en by

V � (4.10)

Making the substitution of 1/V for dn/(n � 1) in Eq. 4.9, we get

dD � (4.11)

which allows us to immediately evaluate the chromatic dispersion pro-
duced by a thin prism.

4.4 Minimum Deviation

The deviation of a prism is a function of the initial angle of incidence
I1. It can be shown that the deviation is at a minimum when the ray
passes symmetrically through the prism. In this case I1 � I′2 � 1⁄2(A �
D) and I′1 � I2 � A/2, so that if we know the prism angle A and the
minimum deviation angle D0 it is a simple matter to compute the index
of the prism from

n � � (4.12)

This is a widely used method for the precise measurement of index,
since the minimum deviation position is readily determined on a spec-
trometer. This position for the prism is also approximated in most
spectral instruments because it allows the largest diameter beam to
pass through a given prism and also produces the smallest amount of
loss due to surface reflections.

4.5 The Achromatic Prism and the Direct
Vision Prism

It is occasionally useful to produce an angular deviation of a light
beam without introducing any chromatic dispersion. This can be done
by combining two prisms, one of high-dispersion glass and the other of
low-dispersion glass. We desire the sum of their deviations to equal
D1,2 and the sum of their dispersions to equal zero. Using the equations
for “thin” prisms (Eqs. 4.8 and 4.11), we can express these require-
ments as follows:

Deviation D1,2 � D1 � D2 � A1 (n1 � 1) � A2 (n2 � 1)

sin 1⁄2 (A + D0)��
sin 1⁄2 A

sin I1�
sin I′1

D
�
V

nd � 1
�
nF � nC
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Dispersion dD1,2 � dD1 � dD2 � 0 � �

� �

A simultaneous solution for the angles of the two prisms gives

A1 �

(4.13)

A2 �

It is apparent that the prism angles will have opposite signs and
that the prism with the larger V-value (smaller relative dispersion)
will have the larger angle. A sketch of an achromatic prism is shown
in Fig. 4.3. Note that the emerging rays are not coincident but are par-
allel, indicating the same angular deviation.

In the direct vision prism it is desired to produce a dispersion with-
out deviating the ray. By setting the deviation D1,2 equal to zero and
preserving the dispersion term dD1,2 in the preceding equations we can
solve for the angles of two prisms which will produce the desired
result. The solution is

A1 �

(4.14)

A2 �

A two-element direct vision prism is shown in Fig. 4.4a. In order to
obtain a large enough dispersion for practical purposes it is often nec-
essary to use more than two prisms. Figure 4.4b shows the application
of such a prism to a hand spectroscope.

Since Eqs. 4.13 and 4.14 were derived using the equations for thin
prisms, it is obvious that the values of the component prism angles

dD1,2V1V2���
(n2 � 1) (V1 � V2)

dD1,2V1V2���
(n1 � 1) (V2 � V1)

D1,2V2
���
(n2 � 1) (V2 � V1)

D1,2V1
���
(n1 � 1) (V1 � V2)

A2 (n2 � 1)
��

V2

A1 (n1 � 1)
��

V1

D2
�
V2

D1
�
V1
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Figure 4.3 An achromatic prism.
The red and blue rays emerge
parallel to each other; no chro-
matic dispersion is introduced
by the deviation.



which they give will be approximations to the exact values when the
prisms are other than thin. For exact work, these approximate values
must be adjusted by exact ray tracing based on Snell’s law.

4.6 Total Internal Reflection

When a light ray passes from a higher index medium to one with a
lower index, the ray is refracted away from the normal to the surface
as shown in Fig. 4.5a. As the angle of incidence is increased, the angle
of refraction increases at a greater rate, in accordance with Snell’s law
(n � n′):

sin I′ � sin I

When the angle of incidence reaches a value such that sin I � n′/n,
then sin I′ � 1.0 and I′ � 90°. At this point none of the light is trans-
mitted through the surface; the ray is totally reflected back into the
denser medium, as is any ray which makes a greater angle to the nor-
mal. The angle

Ic � arcsin (4.15)

is called the critical angle and for an ordinary air-glass surface has a
value of about 42° if the index of the glass is 1.5; for an index of 1.7,
the critical angle is near 36°; for an index of 2.0, 30°; for an index of
4.0, 14.5°.

n′
�
n

n
�
n′
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Figure 4.4 (a) A direct vision prism disperses the light
into its spectral components without deviation of the
beam. (b) Hand spectroscope. The collimating lens pro-
duces a magnified image of the slit at infinity for easy
viewing. The prism then disperses the light into a spec-
trum without deviation of the yellow ray.



For practical purposes, if the boundary surface is smooth and clean,
100 percent of the energy is redirected along the totally reflected ray.
However, it should be noted that the electromagnetic field associated
with the light actually does penetrate the surface for a relatively short
(to the order of a wavelength) distance. If there is anything near the
other side of the boundary surface, the total internal reflection can be
“frustrated” to some extent and a portion of the energy will be trans-
mitted. Since the distance of effective penetration is only to the order
of the wavelength of the light involved, this phenomenon has been
used as the basis of a light valve, or modulator. In the German “Licht-
Sprecher,” an external piece of glass was placed in contact with the
reflecting face of a prism to frustrate the reflection, and then moved an
extremely short distance away (e.g., a few micrometers) to reinstate
the reflection.

It should also be noted that the reflection of a totally reflecting sur-
face is decreased by aluminizing or silvering the surface. When this is
done, the reflectance drops from 100 percent to the reflectance of the
coating applied to the surface.

4.7 Reflection from a Plane Surface

Since the prism systems which are discussed in the balance of this
chapter are primarily reflecting prisms (the majority of which can be
replaced by a system of plane mirrors), we shall first discuss the imag-
ing properties of a plane reflecting surface. Rays originating at an
object are reflected according to the law of reflection, which states that
both the incident and reflected rays lie in the plane of incidence and
that both rays make equal angles with the normal to the surface. The
normal to the surface is the perpendicular at the point where the ray
strikes the surface, and the plane of incidence is that plane containing
the incident ray and the normal.
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Figure 4.5 Total internal reflec-
tion occurs when a ray, passing
from a higher to a lower index of
refraction, has an angle of inci-
dence whose sine equals or
exceeds n′/n.



In Fig. 4.6, the plane of the page is the plane of incidence. Two rays
from point P are shown reflected from the surface MM′. By extending
the rays backward, it can be seen that after reflection they appear to
be coming from point P′, which is a virtual image of point P. Both P and
P ′ lie on the same normal to the surface (POP′), and the distance OP
is exactly the same as the distance OP′.

If we now consider an extended object such as the arrow AB in Fig.
4.7, we can readily locate the position of its image by using the princi-
ples of the preceding paragraph to locate the images of points A and B.
An observer at E looking directly at the arrow would see the arrow-
head A at the top of the arrow. However, in the reflected image, the
arrowhead (A′) is at the bottom of the arrow. The image of the arrow
has been reoriented (or inverted) by the reflection.

If we add a crosspiece CD to the arrow, the image is formed as shown
in Fig. 4.8, and although the image of the arrow has been inverted, 
the image of the crosspiece has the same left-to-right orientation as
the object.

The preceding discussion has treated reflection from the standpoint
of an observer viewing a reflected image. Since the path of light rays
is completely reversible, we can equally well consider point P′ in Fig.
4.6 to be an image formed by a lens at the right. Then P would be the
reflected image of P ′. Similarly in Figs. 4.7 and 4.8, we may replace 
the eye with a lens whose image is the primed figure (A′B′ or A′B′C′D′)
and view the unprimed figures as their reflected images.

A point worth noting is that reflection constitutes a sort of “folding”
of the ray paths. In Fig. 4.9, the lens images the arrow at AB. If we now
insert reflecting surface MM′, the reflected image is at A′B′. Notice that
if the page were folded along MM′, the arrow AB and the solid line rays
would exactly coincide with the arrow A′B′ and the reflected (dashed)
rays. It is frequently convenient to “unfold” a complex reflecting sys-
tem; one advantage of this device is that an accurate drawing of the ray
paths becomes a simple matter of straight lines.
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Figure 4.6 A plane reflecting
surface forms a virtual image of
an object point. Object and
image are equidistant from the
reflecting surface, and both lie
on the same normal to the sur-
face.



A useful technique to determine the image orientation after passage
through a system of reflectors is to imagine that the image is a trans-
verse arrow, or pencil, which is bounced off the reflecting surface,
much as a thrown stick would be bounced off a wall. Figure 4.10 illus-
trates the technique. The first illustration shows the pencil approach-
ing and striking the reflecting surface, the second shows the point
bouncing off the reflector and the blunt end continuing in the original
direction, and the third shows the pencil in the new orientation after
the reflection. If the process is repeated with the pencil perpendicular
to the plane of the paper, the orientation of the other meridian of the
image can be determined. The procedure can then be repeated through
each reflection in the system.
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Figure 4.7 The reflected image
A′B′ of the arrow AB appears
inverted to an observer at E.

Figure 4.8 The reflected image
is inverted top to bottom, but not
left to right.



A card marked with the arrow and crossbar of Fig. 4.11 is also useful
for this purpose. The reader’s attention is directed to the fact that the ini-
tial orientation of the pencil, or pattern, is chosen so that one meridian
of the pattern coincides with the plane of incidence. In the majority of
reflecting systems, one or the other of the meridians will be in the plane
of incidence throughout the system, and the application of this technique
is straightforward. Where this is not the case, the card can be marked
with a second set of meridians so that the second set is aligned with the
plane of incidence. This second set can then be carried through the reflec-
tion as before; the orientation of the final image is of course given by the
original set of markings. Figure 4.20b exemplifies this method.

4.8 Plane Parallel Plates

As will become apparent, most prism systems are the equivalent of a
thick block of glass. Thus we continue with a discussion of the effects
produced by a plane-parallel plate of glass. Figure 4.12 shows a lens
which, in air, would form an image at P. The insertion of the plane par-
allel plate between the lens and P displaces the image to P ′. If we trace
the path of the light rays through the plate, we first notice that the ray
emerging from the plate has exactly the same slope angle that it had
before passing through the plate, since by Snell’s law, sin I′1 � (1/n) sin
I1, and I2 � I′1 (since the surfaces are parallel). Thus, sin I2 � sin I′1 �
(1/n) sin I1 � (1/n) sin I′2, and I1 � I′2. Therefore, the effective focal
length of the lens system, and the size of the image, are unchanged by
the insertion of the plate.

The amount of longitudinal displacement of the image is readily
determined by application of the paraxial raytracing formulas of Chap.
2, and is equal to (n � 1)t/n. The effective thickness of the plate compared
to air (the equivalent air thickness) is less than the actual thickness t
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Figure 4.9 The reflecting surface
MM′ folds the optical system.
Note that if the page is folded
along MM′, the rays and images
coincide.

Figure 4.10 A useful technique
in determining the orientation
of a reflected image is to visual-
ize the image as a pencil “bounc-
ing” off a solid wall as it moves
along the system axis.



by the amount of this shift. The equivalent air thickness is thus found
by subtracting the displacement from the thickness and is equal to t/n.
The concept of equivalent thickness is useful when one wishes to
determine whether a certain size prism can be fitted into the available
air space of an optical system, and also in prism system design.

If the plate is rotated through an angle I as shown in Fig. 4.13, it can
be seen that the “axis ray” is laterally displaced by an amount D,
which is given by

D � t cos I (tan I � tan I′) � t

or

D � t sin I �1 � �
or

D � t sin I �1 � �	 �
A power series expansion yields the following expression:

D � �1 �

� � . . .�I4 (n4 � 15n3 � 15n2 � 45n � 45)
����

120n4

I2 (�n2 � 3n � 3)
���

6n2

tI (n � 1)
��

n

1 � sin2 I
��
n2 � sin2 I

cos I
�
n cos I′

sin (I � I′)
��

cos I′
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Figure 4.11 Image orientation
after reflection.

Figure 4.12 The longitudinal
displacement of an image by a
plane parallel glass plate.



For small angles, we can make the usual substitution of the angle
for its sine or tangent, or simply use the first term of the expansion 
to get

d �

This lateral displacement by a tilted plate is used in high-speed cam-
eras (where the rotating plate displaces the image an amount approx-
imately equal to the travel of the continuously moving film) and in
optical micrometers. The optical micrometer is usually placed in front
of a telescope and used to displace the line of sight. The amount of dis-
placement is read off a calibrated drum connected to the mechanism
which tilts the plate.

When used in parallel light, a plane parallel plate is free of aberra-
tions (since the rays enter and leave at the same angles). However, if
the plate is inserted in a convergent or divergent beam, it does intro-
duce aberrations. The longitudinal image displacement (n � 1)t/n is
greater for short wavelength light (higher index) than for long, so that
overcorrected chromatic aberration is introduced. The amount of dis-
placement is also greater for rays making large angles with the axis;
this is, of course, overcorrected spherical aberration. When the plate is
tilted, the image formed by the meridional rays is shifted backward
while the image formed by the sagittal rays (in a plane perpendicular
to the page in the figures) is shifted by a lesser amount, so that astig-
matism is introduced.

The amount of aberration introduced by a plane parallel plate can
be computed by the formulas below. Reference to Fig. 4.14 will indicate
the meanings of the symbols

U and u—slope angle of the ray to the axis

Up and up—the tilt of the plate

t—thickness of the plate

n—index of the plate

V—Abbe V number (nd � 1)/(nF � nC)

ti (n � 1)
��

n
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Figure 4.13 The lateral displace-
ment of a ray by a tilted plane
parallel plate.



Chromatic aberration � l′F � l′C � 

Spherical aberration � L′ � l′ � �1 � � (exact)

� (third order)

Astigmatism � (l′s � l′t )�

� � � 1� (exact)

� (third order)

Sagittal coma � (third order)

Lateral chromatic � (third order)

These expressions are extremely useful in estimating the effect that
the introduction (or removal) of a plate or a prism system will have on
the state of correction of an optical system.

A common use for a glass plate is as a beam splitter, tilted at an
angle of 45°. In this orientation the astigmatism is approximately a
quarter of the thickness of the plate. Since this can severely degrade
the image, such plate beam splitters are not recommended in conver-
gent or divergent beams (i.e., where u in Fig. 4.14 is nonzero). Note
that the astigmatism can be nullified by inserting another identical

tup(n � 1)
��

n2V

tu2up (n2� 1)
��

2n3

�tup
2 (n2 � 1)

��
n3

n2 cos2 Up
��
(n2� sin2 Up)

t
��
�n2 � s�in2 Up�

tu2 (n2 � 1)
��

2n3

n cos U
��
�n2 � s�in2 U�

t
�
n

t(n � 1)
�

n2V
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plate which is tilted in a meridian 90° to the original plate, by intro-
ducing either a weak cylinder or a tilted spherical surface, or by wedg-
ing the plate.

4.9 The Right-Angle Prism

The right-angle prism, with angles of 45°–90°–45°, is the building
block of most nondispersing prism systems. Figure 4.15 shows a par-
allel bundle of rays passing through such a prism, entering through
one face, reflecting from the hypotenuse face, and leaving through the
second face. If the rays are normally incident on the face of the prism,
they are deviated through an angle of 90°. At the hypotenuse face, the
rays have an angle of incidence of 45° so that they are subject to total
internal reflection. If the entrance and exit faces are low-reflection-
coated, this makes the prism a highly efficient reflector for visual
usage since the only losses are the absorption of the material and the
reflection losses at the faces which total a few percent or less. (In the
ultraviolet and infrared portions of the spectrum, the absorption of a
prism may be quite objectionable.) It can be seen that the total inter-
nal reflection is limited to rays which have angles of incidence greater
than the critical angle, and many prism systems are made of high-
index glass to permit total reflection over larger angles.

By unfolding the prism, as indicated by the dashed lines in Fig. 4.16,
it is apparent that the prism is the equivalent of a glass block with
parallel faces, with a thickness equal to the length of the entrance or
exit faces. The equivalent air thickness of the block is, of course, this
thickness divided by the index of the prism.

If the 45°–90°–45° prism is used with the light beam incident on the
hypotenuse face as shown in Fig. 4.17, the light is totally reflected
twice and the rays emerge in the opposite direction, having been devi-
ated through 180°. Figure 4.17 also indicates the unfolded prism path
and the image orientation of this prism. Notice that the image has
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Figure 4.15 Right-angle prism.



been inverted, top to bottom, but not left to right. The unfolded prism
path is called a tunnel diagram. Such a diagram can be used to deter-
mine the angular field of the prism as well as the size of the beam
which will pass through the prism.

Used in this way, this prism is a constant-deviation prism.
Regardless of the angle at which a ray enters the prism, the emergent
ray will be parallel, as shown in Fig. 4.18a. This characteristic is a
property of the two reflecting surfaces of the prism. A system which
directs the light ray back on itself is called a retrodirector; this prism
is a retrodirector in one meridian only. (Another of the many constant-
deviation systems possible with two reflectors is the 90° deviation
arrangement shown in Fig. 4.18b, where the reflecting surfaces are at
45° to each other.) The constant-deviation angle is just twice the angle
between the two mirrors.

A prism made by cutting off one corner of a cube, so that there are
three mutually perpendicular reflecting surfaces, is retrodirective in
both meridians. The corner cube (or cube corner) reflector will return
all the light rays striking it back toward their source, although the
rays will be displaced laterally.

A third orientation of the 45°–90°–45° prism is shown in Fig. 4.19, in
which the bundle of rays arrives parallel to the hypotenuse face of the
prism. After being refracted downward at the entrance face, the rays are
reflected upward from the hypotenuse and emerge after a second refrac-
tion at the exit face. The unfolded path of the rays (shown in dashed
lines) indicates that this prism is the equivalent of a plane parallel plate
which is tilted with respect to the axis of the bundle, whereas in the pre-
ceding examples the prism faces have been normal to the axis. If this
prism is used in a convergent light beam, it will introduce a substantial
amount of astigmatism (roughly equal to one-quarter of its thickness).
For this reason, this prism, which is known as a Dove prism, is used
almost exclusively in parallel light. Since the apex of the prism is not
used by the light beam, the prism is usually truncated at AA′.

The Dove prism has a very interesting effect on the orientation of
the image. In Fig. 4.20a, the arrow and crossbar pattern is shown to
be inverted from top to bottom but not left to right. If the prism is
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Figure 4.16



rotated 45°, as in Fig. 4.20b, the image is rotated through 90°; if the
prism is rotated 90° as in Fig. 4.20c, the pattern is rotated 180°. Thus,
the image is rotated twice as fast as the prism. (The analysis of the
image orientation in Fig. 4.20b is an example of the use of an auxiliary
pattern as described in Sec. 4.7. The auxiliary pattern is shown in dot-
ted lines in Fig. 4.20b.)
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Figure 4.17 Right-angle prism used with hypotenuse as
entrance and exit face.

Figure 4.18 (a) The right-angle prism used in the
manner shown is a constant-deviation prism, in
that each ray is reflected through exactly 180°. The
entering and emergent paths are parallel, regard-
less of the initial angle the ray makes with the
prism. (b) A pair of constant-deviation mirrors. In
this case, the deviation produced by the two reflec-
tions is always exactly 90°.

Figure 4.19 The Dove prism. The
dashed lines show that the Dove
prism is equivalent to a tilted
plate and will introduce astig-
matism when used in conver-
gent or divergent beams.



The length of the Dove prism is four to five times the diameter of the
bundle of rays which it will transmit. If two Dove prisms are cement-
ed hypotenuse to hypotenuse (after silvering or aluminizing these
faces), the aperture is thereby doubled with no increase in length. The
double Dove prism is used in parallel light as is the Dove. It must be
precisely fabricated to avoid producing two slightly separated images.
When the double Dove is rotated, or tipped, about its center, it can be
used as a scanner to change the direction of sight of a telescope or
periscope.

4.10 The Roof Prism

If the hypotenuse face of a right-angle prism is replaced by a “roof,”
i.e., two surfaces at 90° whose intersection lies in the hypotenuse, the
prism is called a roof, or Amici, prism. Face and side views of a roof
prism are shown in Fig. 4.21. The addition of the roof to the prism
serves to introduce an extra inversion to the image, as can be seen by
comparing the final orientation of the cross bar in Fig. 4.11 with that
in Fig. 4.22a. This can be understood by tracing the path of the dashed
ray in Fig. 4.22a which connects the circles in the arrow and crossbar
figures before and after passing through the prism.

The angle of incidence (at the roof surface) of the ray shown in Fig.
4.22a is about 60° instead of the 45° it would be for the same ray in the
right-angle prism. Even a ray perpendicular to the roof edge has an
angle of incidence of 45°. The result is that a roof surface allows total
internal reflection for beam angles which would be transmitted
through the hypotenuse face of a right-angle prism.
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Figure 4.20 The orientation of
an image by a Dove prism. (a)
Original position. (b) Prism
rotated 45°; image is rotated 90°
(c) Prism rotated 90°; image is
rotated 180°. Note that the dot-
ted arrow and crossbar in (b) is
oriented so that the dotted
arrow is in the plane of inci-
dence to simplify the analysis of
the image orientation.



In practice, the Amici prism is usually fabricated with the corners
cut off, as shown in Fig. 4.22b, in order to reduce the size and weight
of the prism. The 90° roof angle must be made to a high order of accu-
racy. If there is an error in the roof angle, the beam is split into two
beams which diverge at an angle which is six times the error. Thus, to
avoid any apparent doubling of the image, the roof angle is usually
made accurate to one or two seconds of arc.

The introduction of a roof degrades the diffraction-limited resolution
by a factor approaching 2 in the direction perpendicular to the roof
edge (due to a polarization/phase shift on reflection) no matter how
perfectly the prism is made. Multilayer coatings have been developed
which will reduce this effect.

4.11 Erecting Prism Systems

In an ordinary telescope, the objective lens forms an inverted image of
the object, which is then viewed through the eyepiece. The image seen
by the eye is upside down and reversed from left to right, as indicated
in Fig. 4.23. To eliminate the inconvenience of viewing an inverted
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Figure 4.21 Roof, or Amici,
prism.

Figure 4.22 Amici prism (a) showing a single ray path
through the prism and indicating the image orientation,
(b) with truncated corners to reduce weight without sac-
rifice of useful aperture.



image, an erecting system is often provided to re-invert the image to
its proper orientation. This may be a lens system or a prism system.

Porro prism of the first type

The most commonly used prism-erecting system is the Porro prism of
the first type, illustrated in Fig. 4.24. The Porro system consists of two
right-angle prisms oriented at 90° to each other. The first prism
inverts the image from top to bottom and the second prism reverses it
from left to right. The optical axis is displaced laterally, but is not
deviated. One can see that if this system is inserted into the telescope
of Fig. 4.23, the final image will have the same orientation as the
object. Although the prism system is ordinarily inserted between the
objective and eyepiece (to minimize its size), it will erect the image
regardless of where it is placed in the system.
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Figure 4.23 In a simple tele-
scope, the objective lens forms a
real, inverted internal image of
the object, which is reimaged by
the eyelens. The image seen by
the eye is a virtual inverted
image of the object.

Figure 4.24 Porro prism system
(first type) (a) indicating the
way the Porro system erects an
inverted image. (b) Porro prisms
are usually fabricated with
rounded ends to save space and
weight. Note that the spacing
between the prisms has been
shown increased for clarity.



The Porro prism (first type) owes its popularity to the fact that the
45°–90°–45° prisms are relatively easy and inexpensive to manufac-
ture, with no critical tolerances. However, if the prisms are not
mounted so that their roof edges are exactly at 90° to each other, the
final image will be rotated through twice the angular mounting
error. This is of special importance in binocular systems where the
image presented to one eye must be identical to that presented to
the other.

A shallow ground slot is often cut across the center of the
hypotenuse face of each prism to prevent unwanted grazing angle
reflections from this face which originate from outside the field of view.
See also Fig. 4.39.

Porro prism of the second type

The Porro prism of the second type is shown in Fig. 4.25, and serves
the same purpose as the Porro #1 system. Both Porro systems function
by total internal reflection so that no silvering is required. It is com-
mon to round off the ends of the prisms to conserve space and weight.

The second Porro is somewhat more difficult to fabricate than the
first type, but in some applications its compactness, and the fact that
the prisms can be readily cemented together, offer compensating
advantages. The Porro #2 may also be made in three pieces, by
cementing two small right-angle prisms on the hypotenuse of a large
right-angle prism as indicated in Fig. 4.25b. The lateral displacement
of the axis is less than that for the Porro #1 system.

Abbe prism

The Abbe (or Koenig, or Brashear-Hastings) prism (Fig. 4.26) is an
erecting prism which can be used when it is desired to erect the image
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Figure 4.25 Porro prism system (second type) (a) indicating the erection
of an inverted image. This system is shown made from two prisms in 
(a) and from three prisms in (b).



without displacing the axis as the Porro prisms do. The roof is neces-
sary to provide the left-to-right reversal of the image; the roof angle
must be made accurately to avoid image doubling.

If this prism is made without the roof, it will invert the image in one
meridian only, just as the Dove prism. However, since its entrance and
exit faces are normal to the system axis, it may be used in a converg-
ing beam without introducing astigmatism.

Other erecting prisms

Among the many prisms designed to erect an image are those sketched
in Fig. 4.27. The fact that the image is inverted and reversed left to right
after passing through these prisms may be verified by the methods out-
lined in Sec. 4.7. Notice that each prism (except Fig. 4.27f) has been
arranged so that the axial ray enters and leaves the prism normal to the
prism faces and that all reflections are total internal reflections. In the
Leman and Goerz prisms, the axis is displaced but not deviated. In the
Schmidt and modified Amici prisms, the axis is deviated through a def-
inite angle, which can be selected by the designer (within the limits
allowed by total internal reflection). Note also that the roof surface is
used at the location where the angle of incidence is small and where
there would be light leakage through an ordinary surface.

4.12 Inversion Prisms

The Dove prism (Figs. 4.19 and 4.20) and the roofless Abbe prism men-
tioned in Sec. 4.11 are examples of prisms which invert the image in
one meridian but not the other. The plane mirror and the right-angle
prism (Figs. 4.11 and 4.16) are also simple inversion systems. Figure
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Figure 4.26 Abbe prism. Used as
an in-line erecting system, it
does not displace the axis as the
Porro systems do, nor does it
materially displace the image
longitudinally.



4.28 shows the above prisms plus the Pechan prism, which is a 
relatively compact prism for this purpose. Notice that the addition of
a “roof” to any of these prism swill convert it to an erecting system.

An inversion prism is also known as a derotation prism, since all
inversion prisms rotate the image in the same manner as the Dove
prism, as shown in Fig. 4.20.
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Figure 4.27 Erecting prisms: (a) Schmidt prism; (b) Leman (or Sprenger)
prism; (c) Goerz prism; (d) modified Amici prism; (e) roofed Pechan
prism; (f) roofed delta prism.



The mirror version of Fig. 4.28b is called a k-mirror and is useful in
infrared and ultraviolet applications where material for a solid prism
system is impractical.

4.13 The Penta Prism

The Penta prism (Fig. 4.29a) will neither invert nor reverse the image.
Its function is to deviate the line of sight by 90°. It has the valuable
property of being a constant-deviation prism, in that it deviates the
line of sight through the same angle regardless of its orientation to the
line of sight.

Most of the prism systems described in this chapter could be replaced
by a series of plane mirrors, and this is sometimes done for reasons of
weight and/or economy. However, a prism, as a monolithic glass block, is
a very stable system and is not as subject to environmental variation of
angles as is an assemblage of mirrors on a metal support block.
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Figure 4.28 Inversion (or derotation) prisms: (a) Dove
prism; (b) reversion prism; (c) right-angle prism; (d) Pechan
prism; (e) delta, or Taylor, prism; (f) compact prism.



The Penta prism is used where it is desirable to produce an exact 90°
deviation without having to orient the prism precisely. The end reflec-
tors of rangefinders are often of this type, and in optical tooling and
precise alignment work, the Penta prism is useful to establish an exact
90° angle. In large rangefinders, however, the prism is replaced by two
mirrors (Fig. 4.29b), securely cemented to a block in order to avoid the
weight, absorption, and cost of a large block of solid glass.

Occasionally a roof is substituted for one of the reflecting faces of the
Penta prism to invert the image in one meridian.

4.14 Rhomboids and Beam Splitters

The rhomboid prism is a simple means of displacing the line of sight
without affecting the orientation of the image or deviating the line of
sight. The rhomboid prism and its mirror system equivalent are shown
in Fig. 4.30.

A beamsplitter is frequently useful for the purpose of combining two
beams (or images) into one, or for separating one beam into two. A thin
plate of glass with one surface coated with a semireflecting coating, as
shown in Fig. 4.31a, can be used for this purpose, but it suffers from two
drawbacks. First, if used in a convergent or divergent beam, it would
introduce astigmatism, and second, the reflection from the second sur-
face, although faint, would produce a ghost image displaced from the pri-
mary image. (Note that in parallel light neither of these objections is
valid, provided the surfaces of the plate are accurately parallel.) The
beamsplitter cube (Fig. 4.31b) avoids these difficulties. It is composed of
two right-angle prisms cemented together. The hypotenuse of one prism
is coated with a semireflecting coating before cementing.

Where the weight or absorption of the cube cannot be tolerated, a
pellicle is often used as a semireflector. A pellicle is a thin (2- to 10-�m)
membrane (usually a plastic such as nitrocellulose) stretched over a
frame; by virtue of its extreme thinness, both the astigmatism and
ghost displacement are reduced to acceptable values.
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Figure 4.29 The Penta prism (a)
and its equivalent mirror sys-
tem (b).



Obviously, the shape of the pellicle surface is determined by the
shape of the frame over which it is stretched, and an accurately plane
support is necessary. There are two less obvious features of the pelli-
cle which may be disadvantageous: (1) Interference between light
reflected from the two surfaces of the extremely thin pellicle can result
in a transmission that varies in a rippled way as a function of wave-
length, and (2) the pellicle can act as if it were the diaphragm of a
microphone, and any atmospheric vibrations can change the shape of
the reflecting surface, introducing significant changes in the imagery
of the system. This is the basis for one “talk-on-a-beam-of-light” toy.

Figure 4.32 shows a prism which is often used in microscope eye-
pieces to change the direction of the line of sight from vertical to a
more-convenient-to-use 45°. As shown, the prism can be used as 
a beamsplitter either to provide for coaxial illumination or to allow a
second eyepiece; without the beamsplitting feature, it simply redirects
the line of sight.
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Figure 4.30 (a) Rhomboid prism.
(b) An equivalent mirror system.
Both systems displace the opti-
cal axis without deviation or
reorientation of the image.

Figure 4.31 Beamsplitters. (a) A thin parallel plate is con-
venient but may be objectionable because of ghosting and
astigmatism, unless used in parallel light. (b) Beam-
splitting cube has a semireflecting coating supplied to one
of the diagonal faces before cementing.



In Fig. 4.33, two binocular eyepiece prism systems are sketched.
Both serve the same function, namely splitting the light beam from
an objective lens into two parts. The two beams are displaced suffi-
ciently so that they can be presented to two eyepieces and both eyes
may simultaneously view the same subject. Notice that in both sys-
tems, extra glass has been added to the left-hand path so that the
amount of glass in each path is identical; in this way the aberrations
introduced by the glass are the same for each path. Most of the glass
in these systems could be dispensed with if desired, since each of
them is equivalent to a beamsplitting cube plus three reflectors. In
the system shown in Fig. 4.33b, the two halves can be rotated about
the objective axis to vary the spacing between the eyepieces as shown
in Fig. 433c. Notice that the image is not rotated by this procedure but
retains its original orientation, because the reflecting surfaces are in
the form of a rhomboid prism.

Often two Porro systems are used in a rotatable configuration which
allows a change in the eye separation.

4.15 Plane Mirrors

In the preceding discussions we have indicated several times that
reflecting prisms may be replaced by mirrors. For most applications, it
is necessary that the mirrors be first-surface mirrors, as opposed to
ordinary second-surface mirrors. The two types are sketched in Fig.
4.34. The first-surface mirror is usually preferable because it does not
produce a ghost image as does the second-surface mirror. In addition,
the second-surface mirror requires the processing of an extra surface
in its fabrication. It also requires the light to pass through a thickness
of glass which may introduce aberrations and which will absorb ener-
gy in ultraviolet and infrared applications. The second-surface mirror
can be made more durable, however, since its reflecting coating can be
protected from the elements by electrodeposited copper and painted
coverings. First-surface mirrors are usually made with vacuum-
deposited aluminum films protected by a thin transparent overcoating
of silicon monoxide or magnesium fluoride.
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Figure 4.32



4.16 The Design of Prism and Reflector
Systems

Ordinarily it is required of a prism (or reflector) system that it produce
an image with a certain orientation and with the emergent beam of
light redirected in a given manner. The design effort is usually best
begun by establishing the minimum number of reflectors which will
produce the desired result. This is most simply (and perhaps best)
accomplished by straightforward trial and error. A rough perspective
sketch is made to indicate the reflections necessary to locate the image
in its desired position. The orientation of the image is then checked by
the technique of Sec. 4.7; reflectors are added in various orientations
until the image orientation is correct. Usually several roughly equiva-
lent schemes are possible, and a selection can be made based on the
requirements of the application.
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Figure 4.33 Prism systems for binocular eyepiece instruments. System (a) can be
adjusted to match the user’s eye separation by sliding both outer prisms in or out;
this defocuses the instrument. Sketch (c) shows how the halves of (b) can be rotat-
ed about the objective axis to make this adjustment.

Figure 4.34 (a) Second-surface
mirror. (b) First-surface mirror.



When the reflection system is completed, the optical system is
unfolded, i.e., sketched with the optical axis as a straight line. The
object, image, and lens apertures are added to the sketch and the nec-
essary sizes for the reflectors are determined in both meridians. If the
system is to be composed of prisms, the unfolded layout is repeated
with the axial distances adjusted to the “equivalent air thickness” (t/n)
for that portion of the system which is glass so that the ray paths can
be drawn as straight lines.

As an example of reflector system design, let us consider the prob-
lem presented by Fig. 4.35. The object at A is to be projected by an ordi-
nary lens B onto a screen at S. The plane of S is parallel to the original
projection axis and its center is above the axis by some amount Y. The
required orientations of object and image are shown in the sketch.

We begin by noting that the image formed by the projection lens will
be inverted in both meridians with respect to the object, as shown at
C in Fig. 4.35. Now, passing to Fig. 4.36, let us consider the effect of a
mirror placed at D. Of the four directions shown as possible reflections
at D, the upward reflection labeled D1 seems the most promising since
it sends the light in a direction that it must eventually take, so we
elect to pursue this line. Using similar reasoning at E, we should be
inclined to select E2; however, the image at E2 is rotated 90° from our
desired orientation. Selecting E1 on the basis that its image orienta-
tion is closest to the desideratum, we consider a reflection at F. Again,
F3 is in the proper direction, but the image is reversed from left to
right. Case F1 has the proper orientation, but the light is traveling
away from the screen. If we add a mirror to reverse the direction of
propagation, we will have both orientation and direction as required.
To accomplish this without directing the light back through F, we must
resort to a figure 4 arrangement as shown in Fig. 4.37, which diagrams
the entire system.

It is quite apparent that Fig. 4.37 represents only one of the many
possible arrangements of mirrors which could be utilized to accomplish
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Figure 4.35



this same end result. The reader may also have noticed that the dis-
cussion has been limited to reflections for which the plane of incidence
lay in one of the cartesian reference planes, and also that first consid-
eration was given to reflections which deviated the axis by 90°. For the
novice, these restrictions have much to recommend them; one is well
advised to keep first trials of this type as simple and uncomplicated as
possible. Further, the reduction of the system to practice is much sim-
plified if compound angles are avoided. If our problem had required
that the final image be rotated 45°, then we would necessarily have
had to depart from the cartesian planes to achieve the desired result.

The Porro erecting prism (Fig. 4.38a) will serve as an illustrative
example of the “unfolding” technique used in the design of prism sys-
tems. The prisms have been unfolded in Fig. 4.38b (for clarity, the sec-
ond prism is shown rotated 90° about the axis). Each prism can be seen
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Figure 4.36

Figure 4.37



to be the equivalent of a glass block whose thickness is twice the size
of its end face. Notice that the rays from the lens are refracted at each
air-glass surface of the system and that the image has been displaced
to the right by the prisms.

In Fig. 4.38c, the prisms are drawn with their “equivalent air thick-
ness” as discussed in Section 4.8. This allows us to draw the (paraxial)
light rays through the prism as straight lines, simplifying the con-
struction considerably.

Now let us suppose that we are to design the minimum size Porro sys-
tem for a 7 � 50 binocular. The objective lens has a focal length of 7 in,
an aperture of 2 in, and is to cover a 58-in-diameter field, as sketched in
Fig. 4.39a. We first note that the proportions of face width to “equiva-
lent air thickness” for each prism (Fig. 4.39a) are A:2A/n � 1:2/n, or, if
we assume an index of 1.50, 3:4. We begin the design from the image
and work toward the objective. Placing the exit face of the prism 12 in
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Figure 4.38 (a) Porro prism system (first type). (b)
Unfolded prisms. Dashed lines indicate path rays
would take without prisms. Solid line shows the dis-
placement of the focal point by the prisms. (c) The
prisms are drawn to their equivalent air thickness so
that the rays can be drawn as straight lines.



from the image (to allow for clearance and to keep the glass surface well
out of the focal plane), we construct the dashed line shown in Fig. 4.39a
with a slope of 3:8 (one-half the face-to-equivalent-thickness ratio) start-
ing from the axial intercept of the exit face. This line is, of course, the
locus of the corners of a family of prisms of various sizes, and the point
where it intersects the extreme clearance ray defines the minimum size
prism which will transmit the entire cone of light from the objective. For
practical purposes, the prism should be made slightly larger than this
to allow for bevels and mounting shoulders.

The procedure is now repeated for the other prism; an air space is
left between the two to allow for the mounting plate to which both
prisms are to be fastened. In Fig. 4.39b, the system is drawn to scale,
with the prism blocks expanded to their true length. The reason for the
ground slot usually cut into the hypotenuse faces of Porro prisms can
be understood from an examination of the unfolded drawings. Light
rays from outside the desired field of view can be reflected (by total
internal reflection) from these faces back into the field where they are
quite annoying; the slot intercepts these rays as they graze along the
hypotenuse.
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Figure 4.39 The layout of a minimum-size prism system is
shown in (a). The extreme clearance rays connect the rim of
the objective with the edge of the field of view. The intersec-
tion of the dashed lines (see text) with these rays locates the
corner of the smallest prism which will pass the full image
cone. In (b) the prisms are drawn to scale, showing their true
thickness.



4.17 Analysis of Fabrication Errors

The effects produced by errors in prism angles (due to manufacturing
tolerances) are readily analyzed. Such angular errors can be treated as
equivalent to the rotation of a reflecting surface from its nominal posi-
tion, and/or the addition of a thin refracting prism to the system.

As an example, consider the right-angle prism shown in Fig. 4.40
and assume that the upper 45° angle is too large by � and that the low-
er 45° angle is too small by �. A ray normal to the entrance face will
make an angle of incidence of 45° � � at the hypotenuse; the angle of
reflection will then be 45° � � and the ray will be reflected through an
angle of 90° � 2�. Thus, rotating the reflecting face through � has
introduced an error of 2� in the direction of the ray.

At the exit face, the ray has an angle of incidence of 2� and, if the
prism index is 1.5, an angle of refraction of 3�. Thus, the total devia-
tion of the ray from its nominal direction is 3�. Also, since the ray has
been deviated through an angle � by refraction at this surface, the ray
will be dispersed and spread out into a spectrum subtending an angle
of �/V according to Eq. 4.11.
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Figure 4.40 The passage of a ray
through a right-angle prism
whose hypotenuse face is tilted
from its proper position by a
small angle �. After reflection,
the ray is deviated by 2�; this is
increased to 3� (or 2n�) by
refraction at the exit face.
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The Eye

5.1 Introduction

A knowledge of the characteristics of the human eye is important to
the practice of optical engineering because the majority of optical sys-
tems utilize the eye as the final element of the system in one way or
another. Thus, it is vital that the designer of an optical system under-
stand what the eye can and cannot accomplish. For example, if a visu-
al optical system is required to recognize a certain size target or to
measure to a certain degree of accuracy, the magnification of the image
presented to the eye must be sufficient to allow the eye to detect the
necessary details. On the other hand, it would be wasteful to design a
system with a perfection of image rendition which the eye could not
utilize.

The human eye is a living optical system and its characteristics vary
widely from individual to individual. For a given individual, the char-
acteristics may vary from day to day, indeed from hour to hour.
Therefore, the data presented in this chapter must be considered as
central values in a range of values; in fact, some data are useful only
as an indication of the order of magnitude of a certain characteristic.
The conditions under which the eye is used play a large role in deter-
mining the behavior of the eye and must always be taken into account.

In physiological optics, the unit of measure for the power of a lens or
optical system is the diopter, the abbreviation for which is D. The
diopter power of a lens is simply the reciprocal of its effective focal
length, when the focal length is expressed in meters. For example, a
lens with a 1-m focal length has a power of 1 diopter; a 12-m focal
length, 2 diopters; and a lens of 1-in focal length has a power of 40
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diopters (or more exactly, 39.37 D). For a single surface, the dioptric
power is given by (n′ � n)/R, with R the radius in meters. A 1-diopter
prism produces a deviation of 1 cm in a 1-m distance, i.e., a deviation
of 0.01 radians, or about 0.57 degrees.

5.2 The Structure of the Eye

The eyeball is a tough plasticlike shell filled largely with a jellylike
substance under sufficient pressure to maintain its shape. It rides in
a bony socket of the skull on pads of flesh and fat. It is held in place
and rotated by six muscles.

Figure 5.1 is a horizontal section of the right eye; the nose is to the
left of the figure. The outer shell (sclera) is white and opaque except
for the cornea, which is clear. The cornea supplies most (about two-
thirds) of the refractive power of the eye. Behind the cornea is the
aqueous humor, which (as its name implies) is a watery fluid. The iris,
which gives the eye its color, is capable of expanding or contracting to
control the amount of light admitted to the eye. The pupil formed by
the iris can range in diameter from 8 mm in very dim light to less than
2 mm under very bright conditions. The lens of the eye is a flexible cap-
sule suspended by a multitude of fibers, or ligaments, around its
periphery. The eye is focused by changing the shape of the lens. When
the sphincter muscles to which the suspensory ligaments are connect-
ed are relaxed, the lens has its flattest shape and the normal eye is
focused at infinity. When these muscles contract, the lens bulges, so
that its radii are shorter and the eye is focused for nearby objects. This
process is called accommodation.

Behind the lens is the vitreous humor, a material with the consis-
tency of thin jelly. All of the optical elements of the eye are largely
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Figure 5.1 Schematic horizontal
section of right eyeball (from
above).



water; in fact, a reasonable simulation of the optics of the eye can be
made by considering the eye as a single refracting surface of water 
(nD � 1.333, V � 55).

The following table lists typical values for the radii, thicknesses, and
indices of the optical surfaces of the eye. These, of course, vary from
individual to individual.

R1 (air to cornea) � 7.8 mm t1 (cornea) 0.6 n1 1.376

R2 (cornea to aqueous) � 6.4 mm t2 (aqueous) 3.0 n2 1.336

R3 (aqueous to lens) � 10.1 mm t3 (lens) 4.0 n3 1.386–1.406

R4 (lens to vitreous) �6.1 mm t4 (vitreous) 16.9 n4 1.337

The principal points are located 1.5 and 1.8 mm behind the cornea,
and the nodal points are 7.1 and 7.4 mm behind the cornea. The first
focal point is 15.6 mm outside the eye; the second is, of course, at the
retina. The distance from the second nodal point to the retina is 17.1
mm; thus the retinal size of an image can be found by multiplying the
angular subtense of the object in radians (from the first nodal point)
by this distance. When the eye accommodates (focuses), the lens
becomes nearly equiconvex with radii of about 5.3 mm, and the nodal
points move a few millimeters toward the retina. The center of rota-
tion of the eyeball is 13 to 16 mm behind the cornea.

An often overlooked fact is that the commonly accepted eye data 
tabulated above do not give an adequate picture of the quality of the
visual system. First, the surfaces of the eye are not spherical. Some
surfaces, especially those of the lens, depart significantly from true
spheres. In general, the surface curvature tends to be weaker toward
the margin of the surface. Second, the index of the lens is not uniform,
but is higher in the central part of the lens. This sort of index gradient
produces convergent refracting power in and of itself; it also reduces
the surface refracting power at the margin of the lens. Note that both
the gradient index and the surface asphericities introduce overcor-
rected spherical aberration, which offsets the undercorrected spherical
of the outer surface of the cornea.

The retina contains blood vessels, nerve fibers, the light-sensitive rod
and cone cells, and a pigment layer, in that order in the direction that
the light travels. The optic nerve and the associated blind spot are 
located where the nerve fibers leave the eyeball and proceed to the brain.
Slightly (about 5°) to the temporal (outer) side of the optical axis of the
eye is the macula; the center of the macula is the fovea. At the fovea, the
structure of the retina thins out and, in the central 0.3-mm diameter,
only cones are present. The fovea is the center of sharp vision. Outside
this area rods begin to appear; further away only rods are present.

The Eye 127



There are about 7 million cones in the retina, about 125 million rods,
and only about 1 million nerve fibers. The cones of the fovea are 1 to
1.5 �m in diameter and are about 2 to 2.5 �m apart. The rods are
about 2 �m in diameter. In the outer portions of the retina, the sensi-
tive cells are more widely spaced and are multiply connected to nerve
fibers (several hundred to a fiber), accounting for the less distinct
vision in this area of the retina. In the fovea, however, there is one
cone cell per fiber.

The field of vision of an eye approximates an ellipse about 150° high
by about 210° wide. The binocular field of vision, seen by both eyes
simultaneously, is approximately circular and about 130° in diameter.

5.3 Characteristics of the Eye

Visual acuity

The characteristic of the eye which is probably of greatest interest to
the optical engineer is its ability to recognize small, fine details. Visual
acuity (VA) is defined and measured in terms of the angular size of the
smallest character that can be recognized. The characters most fre-
quently used to test VA are uppercase letters or a heavy ring with a
break in the outline. Many uppercase letters can be considered as
made up of five elements; e.g., the letter E has three bars and two
spaces. Visual acuity is the reciprocal of the angular size (in minutes
of arc) of one of the elements of the letter. “Normal” VA is considered
to be 1.0, i.e., when the smallest recognizable letter subtends an angu-
lar height of 5 minutes from the eye and each element of the letter sub-
tends 1 minute. Acuity is frequently expressed as the ratio between
the distance to the target (usually 20 ft) and the distance at which the
target element would subtend 1 minute. Thus, a VA of one-half, or
20/40, indicates that the minimum recognizable letter subtends 10
minutes and its elements 2 minutes. In the Landolt broken ring test,
the width of the ring and the width of the break correspond to the let-
ter element size, and recognition consists of determining the orien-
tation of the break. Visual acuity may reach 2 (or 3 in unusual
individuals) under ideal conditions.

As indicated above, the normal visual acuity is 1 minute, and this is
also the value for the angular resolution of the eye which is conven-
tionally assumed in connection with the design of optical instruments.
Note that a resolution of one line pair (or one cycle) per minute of arc
actually corresponds to a VA of 2, or 20/10. However, this is the value
of VA under what might be termed “normal conditions,” and it is the
value only for that part of the field of view which corresponds to 
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the fovea of the retina. Outside the fovea, the acuity drops rapidly, as
indicated in Fig. 5.2, which is a logarithmic plot of visual acuity (rela-
tive to that at the fovea, which is arbitrarily set at unity) versus the
angular position of the test target in the field of view. Also note that
the vertical VA is 5 to 10 percent higher than horizontal and that the
horizontal and vertical VA are about 30 percent higher than oblique
(45°) VA.

As the brightness of a scene is diminished, the iris opens wider and
the rods take over from the cones. At low illuminations, the eye is col-
or blind and the fovea becomes a blind spot, since the cones lack the
necessary sensitivity to respond to low levels of illumination. One
result of this process is that the visual acuity drops as the illumination
drops. This relationship is plotted in Fig. 5.3, which also indicates the
normal pupil size. Note that the brightness of the area surrounding
the test target affects the acuity. A uniform illumination seems to max-
imize the acuity. Figure 5.4 shows that, as might be expected, reduc-
ing the contrast of the target will also reduce the acuity.

Because the eye has about 0.75 D of chromatic aberration (C-light to
F-light), VA is affected by the wavelength of light illuminating the tar-
get. Normally, VA is given for white light. In monochromatic light, the
acuity is very slightly higher for the yellow and yellow-green wave-
lengths and slightly lower for red wavelengths. In blue (or far red) light,
VA may be 10 to 20 percent lower, and in violet light the reduction in VA
is 20 to 30 percent. The chromatic of the eye can be corrected or doubled
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Figure 5.2 The variation of visual acuity (relative to the fovea)
with the retinal position of the image. Note that because of the
logarithmic scales of the figure, the falloff in visual acuity is far
more rapid than the shape of the curve might indicate.



(by external lenses) without detection; a quadrupling is noticeable. The
effect of the chromatic aberration on the acuity of the eye is less than
one might expect because the slightly yellow lens blocks out the ultra-
violet, and the macula lutea (which is Latin for yellow spot) filters out
the blue and violet light; the spectral response function of the eye is as
shown in Fig. 5.8.
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Figure 5.3 Visual acuity as a function of object brightness.
Visual acuity in reciprocal minutes. The dashed and dot-
ted lines show the effect of increased and decreased
(respectively) surround brightness (1 millilambert is
approximately the brightness of a perfect diffuser illumi-
nated by 1 footcandle). The open circle curve indicates the
diameter of the pupil; pupil diameters are larger in the
young and smaller in the old, especially at lower bright-
nesses.

Figure 5.4 The object contrast
(
B/Bmax) necessary for the eye
to resolve a pattern of alternat-
ing bright and dark bars of
equal width. Note that this
curve shifts upward in reduced
light levels and drops as the
light level is increased. For this
plot the bright bars had a
brightness of Bmax � 23 foot-
lamberts.



Other types of acuity

Vernier acuity is the ability of the eye to align two objects, such as two
straight lines, a line and a cross hair, or a line between two parallel
lines. In making settings of this type, the eye is extremely capable. In
instrument design, it can be safely assumed that the average person
can repeat vernier settings to better than 5 seconds of arc and that he
or she will be accurate to about 10 seconds of arc. Exceptional individ-
uals may do as well as 1 or 2 seconds. Thus, the vernier acuity is 5 or
10 times the visual acuity. Vernier acuity is best when setting one line
between two, next best setting a line on cross hairs or aligning two
butting lines, and less effective in superimposing two lines.

The narrowest black line on a bright field that the eye can detect
subtends an angle of from 12 to 1 second of arc. In conditions of
reversed contrast, i.e., a bright line or bright spot, the size of the line
is not as important as its brightness. The governing factor is the
amount of energy which reaches and triggers the retinal cell into
responding. The minimum level seems to be 50 to 100 quanta incident
on the cornea (only a few percent of the energy incident on the cornea
actually reaches the cell).

The eye is capable of detecting angular motion to the order of 10 sec-
onds of arc. The slowest motion that the eye will detect is 1 or 2 min-
utes of arc per second of time. At the other extreme, a point moving
faster than 200° per second will blur into a streak.

The eyes judge distance from a number of clues. Accommodation,
convergence (the turning in of the eyes to view a near object), haze,
perspective, experience, etc., each play a part. Three-dimensional, or
stereo, vision results from the separation of the two eyes, which caus-
es each eye to see a slightly different picture of an object. The amount
of stereo parallax which can be detected is as small as 2 to 4 seconds.
In a clueless surround, a test subject can adjust two rods to be equidis-
tant to within about 1 in when the rods are 20 ft away. The detectable

D in millimeters is approximately the square of the distance in
meters (D2).

Sensitivity

The lowest level of brightness which can be seen or detected is deter-
mined by the light level to which the eye has become accustomed.
When the illumination level is reduced, the pupil of the eye expands,
admitting more light, and the retina becomes more sensitive (by
switching from cone vision to rod vision and also by an electrochemi-
cal mechanism involving rhodopsin, the visual purple pigment). This
process is called dark adaptation. Figure 5.5 illustrates the adaptation
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process as a function of the length of time that the eye is in darkness.
The “fovea only” curve indicates that after 5 or 10 minutes, the level of
brightness detectable by the portion of the retina used for distinct
vision is as low as it will ever get. At lower levels of illumination, only
the outer portions of the retina are useful; the fovea becomes a blind
spot. Figure 5.5 is for a target which subtends about 2°; the threshold
brightness is lower for larger targets and higher for smaller targets. As
indicated by the dashed lines, the conditions of the test have a great
bearing on the threshold of vision, and the data of Fig. 5.5 should be
regarded as indicating only an order of magnitude for the threshold.

The eye is a poor photometer; it is very inaccurate at judging the
absolute level of brightness. However, it is an excellent instrument for
comparison purposes, and can be used to match the brightness or col-
or of two adjacent areas with a high degree of precision. Figure 5.6
indicates the brightness difference that the eye can detect as a func-
tion of the absolute brightness of the test areas. At ordinary brightness
levels, a brightness difference of about 1 or 2 percent is detectable.
(Note that in comparison photometry, in which the eye is called upon
to match two areas, the precision of setting is increased by making a
series of readings. In half the readings, the brightness of the variable
area is raised until an apparent match is obtained; in the other half of
the readings, the brightness is lowered to obtain the apparent match.
The average is then much more accurate than either set.) Contrast
sensitivity is best when there is no visible dividing line between the
two areas under comparison. When the areas are separated, or if the
demarcation between areas is not distinct, contrast sensitivity drops
markedly.

Figure 5.7 indicates the capability of the normal eye as a compari-
son colorimeter. Again, the eye is poor at determining the absolute
wavelength of a color but quite good at determining a color match;
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Figure 5.5 The threshold of
vision. The minimum brightness
perceptible drops sharply with
time as the eye adapts itself to
darkness. The upper and lower
dashed curves show the effect of
high and low illumination levels
(respectively) before adaptation
begins. For areas subtending
more than 5° the threshold is
almost constant, but rises rapid-
ly as target size is reduced.
Curves shown are for a target
subtending about 2°.



wavelength differences of a few millimicrons are detectable under suit-
able conditions. The comments of the preceding paragraph regarding
dividing lines between test areas apply to color sensitivity as well.

The sensitivity of the eye to light is a function of the wavelength of
the light. Under normal conditions of illumination, the eye is most sen-
sitive to yellow-green light at a wavelength of 0.55 �m, and its sensi-
tivity drops off on either side of this peak. For most purposes the
sensitivity of the eye may be considered to extend from 0.4 to 0.7 �m.
Thus, in designing an optical instrument for visual use, the 
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Figure 5.6 The contrast sensitivity of the eye as a
function of field brightness. The smallest percepti-
ble difference in brightness between two adjacent
fields (
B) as a fraction of the field brightness B
remains quite constant for brightnesses above 1
millilambert if the field is large. The dashed line
indicates the contrast sensitivity for a dark sur-
rounded field. (One millilambert is approximately
the brightness of a perfect diffuser illuminated by
one footcandle, i.e., one foot-lambert.)

Figure 5.7 Sensitivity of the eye
to color differences. The amount
by which two colors must differ
for the difference to be detectable
in a side-by-side comparison is
plotted as a function of the wave-
length. Some data indicates a
more uniform sensitivity of about
twice that shown here.



monochromatic aberrations are corrected for a wavelength of 0.55 or
0.59 �m and chromatic aberration is corrected by bringing the red and
blue wavelengths to a common focus. The wavelengths usually chosen
are either e(0.5461 �m) or d(0.5876 �m) for the yellow, C(0.6563 �m)
for the red, and F(0.4861 �m) for the blue.

Figure 5.8 shows the sensitivity of the eye as a function of wave-
length for normal levels of illumination and also for the dark-adapted
eye. The photopic curve applies for brightness levels of 3 cd/m2 or
more, and the scotopic curve applies for brightness levels of 3 � 10�5

cd/m2 or less. Between these levels, the term “mesopic” is used. Notice
that the peak sensitivity for the dark-adapted eye shifts toward the
blue end of the spectrum, to a value near 0.51 �m. This “Purkinje
shift” is due to the differing chromatic sensitivities of the rods and
cones of the retina, as shown in Fig. 5.8. Figure 5.9 is a tabulation of
the values used in plotting Fig. 5.8. Figure 5.10a is a standardized plot
of ocular sensitivity which is used in colorimetry determinations. The
long-wavelength portion of this curve (Fig. 5.10b) is useful in estimat-
ing the visibility of near-infrared searchlights (as used on sniper-
scopes, etc.) under conditions where security is desired.

5.4 Defects of the Eye

Nearsightedness (myopia) is a defect of focus resulting from too much
power in the lens and cornea and/or too long an eyeball. The result is
that the image of a distant object falls ahead of the retina and cannot
be focused sharply. Since myopia results from an excessive amount of
positive power, it can be corrected by placing a negative lens before the
eye. The power of the negative lens is chosen so that its image is
formed at the most distant point on which the myopic eye can focus.
For example, a person with 2 diopters of myopia cannot see clearly
beyond 12 m (20 in), and a �2 diopter lens (focal length � �12 m or
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Figure 5.8 The relative sensitiv-
ity of the eye to different wave-
lengths for normal levels of
illumination (photopic vision)
and under conditions of dark
adaptation (scotopic vision).



�20 in) is used to correct for this amount of myopia. The onset 
of myopia frequently coincides with adolescence, when growth is 
most rapid.

Instrument myopia occurs when an observer (especially an
untrained observer) focuses an optical instrument such as a micro-
scope or telescope. There is a tendency to focus the instrument so that
the image appears to be about 20 in (2 diopters) away. This may be due
to the observer’s perception that the image is inside the instrument
and therefore should be nearby. Most experienced observers will focus
an instrument much nearer to an infinity setting. They do this by mov-
ing the microscope toward the object to focus, so that the image is
behind the viewer’s eye (and thus well out of focus) until it is in focus.
Instrument myopia may be related to night myopia, where, in the dark
and with no stimulus, the eye apparently also focuses at a close dis-
tance (60 to 80 in).

Farsightedness (hyperopia) is the reverse of myopia and results from
too short an eye and/or too little power in the refracting elements of
the eye. The image of a distant object is formed (when the eye is
relaxed) behind the retina. Hyperopia can be corrected by the use of a
positive spectacle lens. Obviously farsighted individuals can, to the
extent that their power of accommodation will allow, refocus their eyes
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Figure 5.9 The standard relative luminosity factors (relative sensitivity or response) for
photopic and scotopic conditions.



to bring the image onto the retina. If prolonged, this may cause
headaches.

Astigmatism is a difference in the power of the eye from meridian to
meridian and usually results from an imperfectly formed cornea,
which has a stronger radius in one direction than in the other.
Astigmatism of the eye is corrected by the use of toroidal surfaces on
the spectacle lenses.

A contact lens, placed in contact with the surface of the cornea, effec-
tively changes the curvature of the outer surface of the eye (where
most of the visual refractive power occurs). A rigid contact lens can
easily correct astigmatism by replacing the toroidal surface of the
cornea with its own spherical surface. Obviously, a soft (flexible) con-
tact lens requires an orientation mechanism to align its toroidal pow-
er with that of the eye. Myopia and hyperopia can be corrected with
contact lenses which flatten or strengthen the curvature of the outer
surface of the visual optical system.

Radial keratotomy is a surgical technique where radial cuts are
made in the cornea (through most of its thickness). This weakens the
cornea, and the internal pressure of the eye causes it to bulge in the
region of the cuts, thus changing the shape and the power of the
cornea. Two obvious drawbacks to this procedure are light scattering
from the corneal scars left by the cuts, and the fact that the power of
the eye tends to change as one ages, so that the correction may not be
permanent. Another technique (PRK) involves a change in corneal
shape by sculpting using laser ablation. LASIK slices a thin flap of the
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Figure 5.10 (a) Relative sensitivity of a standardized normal eye to
light of varying wavelengths. (b) Sensitivity in the near-infrared.



cornea off and then ablates the cornea to change its shape; the flap is
then replaced.

The chromatic aberration of the eye was discussed in Sec. 5.3; many
eyes have some undercorrected spherical aberration as well. The lens of
the eye has aspheric surfaces and a higher index of refraction in the cen-
tral core of the lens than in the outer portions; both of these factors reduce
the power of the system at the margin of the lens and tend to correct the
heavy undercorrected spherical from the cornea. A few persons have over-
corrected spherical. In most people, the spherical tends toward overcor-
rection with accommodation, since the lens bulges more at the center
than at the edge when the eye focuses on a near point. As much as ±2
diopters of spherical have been measured; however, like chromatic aber-
ration, spherical seems to have little effect on the resolution of the eye.

Presbyopia is the inability to accommodate (focus) and results from
the hardening of the material of the lens which comes with age. Figure
5.11 indicates the (typical) relationship between age and the power of
accommodation. When the eye can no longer accommodate to reading
distance (2 or 3 diopters), it is necessary to wear positive lenses to read
comfortably.

Keratoconus is a conically shaped cornea and can be corrected by
contact lenses which effectively overlay a new spherical surface on the
cornea.

An opaque or cloudy lens (cataract) is frequently removed surgical-
ly to restore vision. The resultant loss of power can be made up by an
extremely strong positive spectacle lens. But better solutions are a
contact lens or by surgically implanting a plastic intraocular lens near
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Figure 5.11 The variation of accommodation power
with age (solid line). The dashed line indicates the
time in seconds to accommodate to 1.3 diopters.



the iris. Such an aphakic eye, lacking a lens, cannot accommodate.
Also, the change in retinal image size due to the shift in refractive
power from inside to outside the eye (if due to the strong spectacle
lens) will preclude binocular vision if only one eye is lensless.

Aniseikonia is the name given to a disparity in retinal image size
from one eye to the other, occurring in otherwise normal eyes, and
results in lack of binocular vision if the disparity is larger than a few
percent. Aniseikonia can be corrected by special thick meniscus lenses
which are effectively low-power telescopes whose magnifications bal-
ance out the difference in retinal image size.

In instrument design, a number of additional factors should be tak-
en into consideration, especially for binocular instruments. An adjust-
ment must be provided for the variation in interpupillary distance, so
that both sides of the instrument can be aligned with the pupils of the
eyes. This distance is typically about 212 in, but it ranges from 2 to 3
in. Both halves of a binocular instrument must have the same magni-
fication (within 12 to 2 percent, depending on the individual’s toler-
ance) and both halves must have their axes parallel (to within 14 prism
diopter vertically, 12 diopter divergence, and 1 diopter convergence).
Each side must be independently focusable to allow for variations in
focus between the two eyes. A focus adjustment of ±4 diopters will take
care of the requirements of all but a few percent of the population; ±2
diopters will satisfy about 85 percent. The depth of field of the eye (the
distance on either side of the point of best focus through which vision
is distinct) is about ±14 diopter. The Rayleigh quarter wave (see Chap.
11) depth of focus is ±1.1/(pupil diameter)2 diopters, which for a 3-mm
pupil works out to ±18 diopter. For biocular devices, such as head-up
displays (HUDs), the angular disparity between the eyes should be
less than 0.001 radians.
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Exercises

1 What power telescope is necessary to enable a person with “normal” visu-
al acuity to read letters 1 mm high at a distance of 300 ft? (tangent of 1 minute
of arc is 0.0003)

ANSWER: 135 �

2 What power corrective lens would be prescribed for a nearsighted person
who could not focus clearly on an object more than 5 in away?

ANSWER: �8 diopters

3 Assuming a depth of focus of ±14 diopter, over what range of distance is
vision perfectly clear when the eye is focused at 10 in?

ANSWER: 114 in

4 It is desired to set an optical vernier to a precision of 0.0001 in. Assuming
that the vernier projects the image of a ruled scale onto a screen which is
viewed from a distance of 10 in and that the setting is made by aligning a scale
line with a cross hair on the screen, what magnification must the projection
lens of the optical vernier have? Use 10 seconds of arc for the vernier acuity.
(Tangent of 1 second is 0.000005)

ANSWER: 5 power

5 A convex reflector of radius of curvature � 10 in is mounted on a spindle
and rotated. (a) What is the largest amount that its center of curvature can be
displaced from the axis of rotation without the motion of the reflected image
of a distant object being detected by the naked eye? Assume the reflected
image is viewed from 10 in. (b) What are the fastest and slowest speeds of rota-
tion at which the motion caused by a decentration of 0.02 in can be detected?

ANSWER: (a) 0.00025 in, (b) 3 to 5 r/min, 300 to 500 r/s
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6 (a) If a plane parallel plate is specified to have zero, ±10 milli-
diopters, power, what is the shortest tolerable focal length it may
have? (b) Assuming one surface is truly flat, what is the strongest
(shortest) acceptable radius for the other surface if the index of refrac-
tion is 1.6? (c) If the piece has a diameter of 20 mm, how many
Newton’s rings will be visible when this surface is tested against a true
flat? (Use 	 � 0.55 �m. One fringe occurs for each 	/2 change in thick-
ness of the air space.)

ANSWER: (a) ±100 m, (b) ±60 m (c) 3 rings
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Stops and Apertures

6.1 Introduction

In every optical system, there are apertures (or stops) which limit the
passage of energy through the system. These apertures are the clear
diameters of the lenses and diaphragms in the system. One of these
apertures will determine the diameter of the cone of energy which the
system will accept from an axial point on the object. This is termed the
aperture stop, and its size determines the illumination (irradiance) at
the image. Another stop may limit the size or angular extent of the
object which the system will image. This is called the field stop. The
importance of these stops to the photometry (radiometry) and perfor-
mance of the system cannot be overemphasized.

The elements of an inexpensive camera system are sketched in Fig.
6.1 and illustrate both aperture and field stops in their most basic
forms. The diaphragm in front of the lens limits the diameter of the bun-
dle of rays that the system can accept and is thus the aperture stop. The
mask adjacent to the film determines the angular field coverage of the
system and is quite apparently the field stop of the camera.

Not all systems are as obvious as this, however, and we will now con-
sider more complex arrangements. Because the theory of stops is read-
ily explained by the use of a concrete example, the following
discussions will be with reference to Fig. 6.2, which is a highly exag-
gerated sketch of a telescopic system focused on an object at a finite
distance. The system shown consists of an objective lens, erector lens,
eyelens, and two internal diaphragms. The objective forms an invert-
ed image of the object. This image is then reimaged at the first focal
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point of the eyelens by the erector lens, so that the eyelens forms the
final image of the object at infinity.

6.2 The Aperture Stop and Pupils

By following the path of the axial rays (designated by solid lines) in
Fig. 6.2, it can be seen that diaphragm #1 is the aperture of the sys-
tem which limits the size of the axial cone of energy from the object.
All of the other elements of the system are large enough to accept a
bigger cone. Thus, diaphragm #1 is the aperture stop of the system.

The oblique ray through the center of the aperture stop is called the
principal, or chief, ray, and is shown in the figure as a dashed line. The
entrance and exit pupils of the system are the images of the aperture
stop in object and image space, respectively. That is, the entrance pupil
is the image of the aperture stop as it would be seen if viewed from the
axial point on the object; the exit pupil is the aperture stop image as it
would be seen if viewed from the final image plane (in this case, at an
infinite distance). In the system of Fig. 6.2, the entrance pupil lies near
the objective lens and the exit pupil lies to the right of the eyelens.
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Figure 6.1 The elements of a
simple box camera illustrate the
functions of elementary aperture
and field stops (the diaphragm
and mask, respectively).

Figure 6.2 Schematic sketch of an optical system to illustrate the relationships between
pupils, stops, and fields.



Notice that the initial and final intersections of the dashed principal
ray with the axis locate the pupils, and that the diameter of the axial
cone of rays at the pupils indicates the pupil diameters. It can be seen
that, for any point on the object, the amount of radiation accepted by,
and emitted from, the system is determined by the size and location of
the pupils.

6.3 The Field Stop

By following the path of the principal ray in Fig. 6.2, it can be seen that
another principal ray starting from a point in the object which is farther
from the axis would be prevented from passing through the system by
diaphragm #2. Thus, diaphragm #2 is the field stop of this system. 
The images of the field stop in object and image space are called 
the entrance and exit windows, respectively. In the system of Fig. 6.2,
the entrance window is coincident with the object and the exit window
is at infinity (which is coincident with the image). Note that the win-
dows of a system do not coincide with the object and image unless the
field stop lies in the plane of a real image formed by the system.

The angular field of view is determined by the size of the field stop,
and is the angle which the entrance or exit window subtends from the
entrance or exit pupil, respectively. The angular field in object space is
frequently different from that in image space. (Alternate definition:
the angular field of view is the angle subtended by the object or image
from the first or second nodal point of the system, respectively. Thus,
for nontelescopic systems in air, object and image field angles are
equal according to this definition. Note that this definition cannot be
applied to an afocal system, which has no nodal or principal points.)

6.4 Vignetting

The optical system of Fig. 6.2 was deliberately chosen as an ideal case
in which the roles played by the various elements of the system are def-
inite and clear-cut. This is not usually the situation in real optical sys-
tems, since the diaphragms and lens apertures often play dual roles.

Consider the system shown in Fig. 6.3, consisting of two positive
lenses, A and B. For the axial bundle of rays, the situation is clear; the
aperture stop is the clear aperture of lens A, the entrance pupil is at
A, and the exit pupil is the image, formed by lens B, of the diameter of
lens A.

Some distance off the axis, however, the situation is markedly dif-
ferent. The cone of energy accepted from point D is limited on its low-
er edge by the lower rim of lens A and on its upper edge by the upper
rim of lens B. The size of the accepted cone of energy from point D is
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less than it would be if the diameter of lens A were the only limiting
agency. This effect is called vignetting, and it causes a reduction in the
illumination at the image point D′. It is apparent that for some object
point still farther from the axis than point D, no energy at all would
pass through the system; thus there is no field stop per se in this sys-
tem as shown.

The appearance of the system when viewed from point D is shown in
Fig. 6.4. The entrance pupil has become the common area of two cir-
cles, one the clear diameter of lens A, and the other the diameter of
lens B as imaged by lens A. The dashed lines in Fig. 6.3 indicate the
location and size of this image of B, and the arrows indicate the “effec-
tive” aperture stop which has a size, shape, and position completely
different than that for the axial case.

In a photographic lens with an adjustable iris diaphragm, its loca-
tion should be such that when stopped down to a small diameter, its
clear aperture is centered in the vignetted oblique beam.

Example A

Let us determine the pupils, windows, and fields of an optical system
of the type shown in Fig. 6.2, assuming the lenses to be “thin lenses.”
The elements of the system are as follows:

Objective clear aperture � 2.3 in 
effective focal length � 10 in

Erector clear aperture � 1.7 in 
effective focal length � 2 in

Eyelens: clear aperture � 1.3 in 
effective focal length � 1 in
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Figure 6.3 Vignetting in a system of separated components. The
cone of rays from point D is limited by the lower rim of lens A and
the upper rim of B, and is smaller than the cone accepted from point
C. Note that the upper ray from D just passes through the image of
lens B which is formed by lens A.



Diaphragm #1: clear aperture � 0.25 in
Diaphragm #2: clear aperture � 0.7 in
Distance, object to objective: 50 in
Distance, objective to erector: 16.5 in
Distance, erector to eyelens: 5 in
Distance, erector to diaphragm #1: 2.38 in
Distance, erector to diaphragm #2: 4 in

We begin the analysis by tracing a paraxial ray from the object point
on the axis, using the thin lens raytracing equations (2.41 and 2.42) of
Chap. 2. We insert two zero-power elements in the system to represent
the diaphragms, so that we can determine the ray heights at the
diaphragms. We assume a nominal ray height of �1.0 at the objective
lens, giving u1 � [1.0/(�50.) � �0.02. The calculation is shown in the
table of Fig. 6.5, lines 3 and 4.

To determine which element of the system limits the diameter of the
axial cone of rays, we add to our tabulation lines 5 and 6, showing the
clear aperture of each element (CA) and the ratio of the clear aperture
to the height that the axial ray strikes the element (CA/y).The element
for which this ratio is the smallest, in this case diaphragm #1, is the
aperture stop. Because of the linear nature of the paraxial equations,
we can get the y and u values for any other axial ray by multiplying
each entry in lines 3 and 4 by the same constant. If we use for the con-
stant the value of 12 CA/y for diaphragm #1 (0.9645), we will get the
data for a ray which just passes through the rim of diaphragm #1. This
ray data is shown in lines 7 and 8 of the table. A comparison of the new
y values of line 7 with the clear apertures of line 5 indicates that the
ray will pass through all the other elements with room to spare.

To determine the locations of the pupils, we trace a ray through the
center of the aperture stop (diaphragm #1) in each direction. The data
of such a ray is shown in lines 9 and 10 of the table. We then deter-
mine the axial intersections of this ray in object and image space and
find that the (apparent) entrance pupil is located 0.1631/0.02474 �
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Figure 6.4 The apertures of the
optical system of Fig. 6.3 as they
are seen from point D.
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�6.594 in to the right of the objective lens (note that this differs from
Fig. 6.2) and that the exit pupil is 0.566/0.35 � �1.617 in to the right
of the eyelens.

The diameter of the pupils is found from the ray data of lines 7 and
8 by determining the ray height in the plane of the pupils. Thus, the
diameter of the entrance pupil is 2(0.9645 � 0.01929 � 6.594), or 2.183
in, and the diameter of the exit pupil is 2(0.07716 � 0.0 � 1.617), or
0.154 in.

A comparison of the values of CA/yp would indicate that diaphragm
#2 is the field stop. (The ray data in lines 9 and 10 of Fig. 6.5 have
already been adjusted so that yp at diaphragm #2 is equal to half of its
clear aperture, in a manner analogous to that by which lines 7 and 8
were derived from lines 3 and 4.) The field of view is given by the slope
of the principal ray which just skims through the field stop. This is the
ray of lines 9 and 10; the object field is ±0.02474 radians and the image
field is ±0.35 radians. The linear size of the object field is twice the
height at which this ray strikes the object plane, or 2.8 in.

A check for vignetting could be made by tracing rays from an object
point at the edge of the field through the upper and power rims of the
entrance pupil. Again, because of the linearity of the paraxial equa-
tions, we can avoid this labor, since the height of the upper rim ray at
an element is given by yp � y0 and that of the lower rim ray by yp � y0.
(The values of y0 and yp are taken from the ray trace data which has
been adjusted, i.e., lines 7 and 9.) This data is tabulated in lines 11 and
12 and a comparison with the clear apertures of the elements indicates
that these rays pass through the system without vignetting.

An alternate technique for determining the aperture stop is to cal-
culate the size and position of the image of each diameter of the sys-
tem as seen from the object, i.e., as imaged by all the elements ahead
of (or to the left of) the diameter. Then the diameter whose image sub-
tends the smallest angle from the object is the aperture stop. A scale
drawing of the images is handy when this technique is used.

6.5 Glare Stops, Cold Stops, and Baffles

A glare stop is essentially an auxiliary diaphragm located at an image
of the aperture stop for the purpose of blocking out stray radiation.
Depending on the system application, a glare stop may be called a Lyot
stop, or in an infrared system, a cold stop. Figure 6.6 shows an erect-
ing telescope in which the primary aperture stop is at the objective
lens. Energy from sources outside the desired field of view, passing
through the objective and reflecting from an internal wall, shield, or
supporting member, can create a glare which reduces the contrast 
of the image formed by the system. In a long wavelength infrared 
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system, the housing itself may be a source of unwanted thermal radi-
ation. This radiation can be blocked out by an internal diaphragm
which is an accurate image of the objective aperture. This stop is usu-
ally cooled and is located inside the evacuated detector Dewar. Since
the stray radiation will appear to be coming from the wall, and thus
from outside the objective aperture, it will be imaged on the opaque
portion of the diaphragm. Another glare stop could conceivably be
located at the exit pupil of this particular system, since it is real and
accessible; however, it would make visual use of the instrument quite
inconvenient.

In most systems the aperture stop is located at or very near the
objective lens. This location gives the smallest possible diameter for
the objective, and since the objective is usually the most expensive
component (per inch of diameter), minimizing its diameter makes good
economic sense. In addition, there are often aberration considerations
which make this a desirable location. However, there are some sys-
tems, such as scanners, where the need to minimize the size and
weight of the scanner mirror makes it necessary to put the stop or
pupil at the scanner mirror rather than at the objective. This causes
the objective to be larger, more costly, and more difficult to design.

In an analogous manner, field stops could be placed at both internal
images to further reduce stray radiation. The principle here is
straightforward. Once the primary field and aperture stops of a system
are determined, auxiliary stops may be located at images of the pri-
mary stops to cut out glare. If the glare stops are accurately located
and are the same size as the images of the primary stops (or slightly
larger), they do not reduce the field or illumination, nor do they intro-
duce vignetting.

Baffles are often used to reduce the amount of radiation that is
reflected from walls, etc., in a system. Figure 6.7 shows a simple
radiometer consisting of a collector lens and a detector in a housing.
Assume that radiation from a powerful source (such as the sun) out-
side the field of view reflects from the inner walls of the mount onto
the detector and obscures the measurement of radiation from the
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Figure 6.6 Stray light reflected from an inside wall of the telescope, is intercepted
by the glare stop, which is located at the internal image of the objective lens.



desired target, as shown in the upper half of the sketch. Under these
conditions, there is no possibility of using an internal glare stop (since
there is no internal image of the entrance pupil) and the internal walls
of the mount must be baffled as shown in the lower half of the sketch
(although an eternal hood or sunshade could also be used if circum-
stances permit).

The key to the efficient use of baffles is to arrange them so that no
part of the detector can “see” a surface which is directly illuminated.
The method of laying out a set of baffles is illustrated in Fig. 6.8. The
dotted lines from the rim of the lens to the edge of the detector indi-
cate the necessary clearance space, into which the baffles cannot
intrude without obstructing part of the radiation from the desired field
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Figure 6.7 Stray (undesired) radiation from outside the use-
ful field of this simple radiometer can be reflected from the
inner walls of the housing and degrade the function of the
system. Sharp-edged baffles, shown in the lower portion, trap
this radiation and prevent the detector from “seeing” a direct-
ly illuminated surface.

Figure 6.8 Construction for the systematic layout of baf-
fles. Note that baffle #3 shields the wall back to point D;
thus, all three baffles could be shifted forward some-
what, so that their coverages overlap.



of view. The dashed line AA′ is a “line of sight” from the detector to the
point on the wall where the extraneous radiation begins. The first baf-
fle is erected to the intersection of AA′ with the dotted clearance line.
Solid line BB′ indicates the path of stray light from the top of the lens
to the wall. The area from Baffle #1 to B′ is thus shadowed and “safe”
for the detector to “see.” The dashed line from B′ to A is thus the safe
line of sight, and baffle #2 at the intersection of AB′ and the clearance
line will prevent the detector from “seeing” the illuminated wall
beyond B′. This procedure is repeated until the entire side wall is pro-
tected. Note that the inside edges of the baffles should be sharp and
their surfaces rough and blackened.

The cast and machined baffles shown in Fig. 6.7 are obviously
expensive to fabricate. Less expensive alternatives include washers
constrained between spacers, or stamped, cup-shaped washers which
can be cemented or press-fitted into place. This type of baffling is not
necessary in all cases. Frequently, internal scattering can be suffi-
ciently reduced by scoring or threading the offending internal surfaces
of the mount. In this way, the reflections are broken up and scattered,
reducing the amount of reflection and destroying any glare images.
The use of a flat black paint is also highly advisable, although care
must be taken to be sure that the paint remains both matte and black
at near-grazing angles of incidence and at the application wavelength.
Sandblasting to roughen the surface and blackening (for aluminum,
black anodizing works well) is a simple and usually effective treat-
ment. Another treatment is the application of black “flocked” paper.
This can be procured in rolls, cut to size, and cemented to the offend-
ing surfaces; this is especially useful for large internal surfaces and for
laboratory equipment.

Specialized flat black paints are available for specific applications
and wavelengths. In the absence of special paints, Floquil brand flat
black model locomotive paint usually can be found at the local hobby
shop and makes a pretty good general-purpose flat black. A specialized
anodizing process, Martin Optical Black (or Martin Infrablack for the
infrared) is extremely effective (�0.2 percent reflective) but is very
fragile.

6.6 The Telecentric Stop

A telecentric system is one in which the entrance pupil and/or the exit
pupil is located at infinity. A telecentric stop is an aperture stop which
is located at a focal point of an optical system. It is widely utilized 
in optical systems designed for metrology (e.g., comparators and con-
tour projectors and in microlithography) because it tends to reduce 
the measurement or position error caused by a slight defocusing of the 
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system. Figure 6.9a shows a schematic telecentric system. Note that
the dashed principal ray is parallel to the axis to the left of the lens. If
this system is used to project an image of a scale (or some other object),
it can be seen that a small defocusing displacement of the scale does
not change the height on the scale at which the principal ray strikes,
although it will, of course, blur the image. Contrast this with Fig. 6.9b
where the stop is at the lens, and the defocusing causes a proportion-
al error in the ray height. The telecentric stop is also used where it is
desired to project the image of an object with depth (along the axis),
since it yields less confusing images of the edges of such an object.

6.7 Apertures and Image Illumination—
f-Number and Cosine-Fourth

f-Number

When a lens forms the image of an extended object, the amount of
energy collected from a small area of the object is directly proportion-
al to the area of the clear aperture, or entrance pupil, of the lens. At
the image, the illumination (power per unit area) is inversely propor-
tional to the image area over which this object is spread. Now the aper-
ture area is proportional to the square of the pupil diameter, and the
image area is proportional to the square of the image distance, or focal
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Figure 6.9 The telecentric stop is located at the focal point
of the projection system shown, so that the principal ray is
parallel to the axis at the object. When the object is slight-
ly out of focus (dotted) there is no error in the size of the
projected image as there is in the system with the stop at
the lens, shown in the lower sketch.



length. Thus, the square of the ratio of these two dimensions is a mea-
sure of the relative illumination produced in the image.

The ratio of the focal length to the clear aperture of a lens system is
called the relative aperture, f-number, or “speed” of the system, and
(other factors being equal), the illumination in an image is inverse-
ly proportional to the square of this ratio. The relative aperture is 
given by:

f-number � efl/clear aperture (6.1)

As an example, an 8-in focal length lens with a 1-in clear aperture
has an f-number of 8; this is customarily written f/8 or f:8.

Another way of expressing this relationship is by the numerical
aperture (usually abbreviated as N.A. or NA), which is the index of
refraction (of the medium in which the image lies) times the sine of the
half angle of the cone of illumination.

Numerical aperture � NA � n′ sin U′ (6.2)

Numerical aperture and f-number are obviously two methods of
defining the same characteristic of a system. Numerical aperture is
more conveniently used for systems that work at finite conjugates
(such as microscope objectives), and the f-number is appropriately
applied to systems for use with distant objects (such as camera lenses
and telescope objectives). For aplanatic systems (i.e., systems correct-
ed for coma and spherical aberration) with infinite object distances,
the two quantities are related by:

f-number � (6.3)

The terms “fast” and “slow” are often applied to the f-number of an
optical system to describe its “speed.” A lens with a large aperture (and
thus a small f-number) is said to be “fast,” or to have a high “speed.” A
smaller aperture lens is described as “slow.” This terminology derives
from photographic usage, where a larger aperture allows a shorter (or
faster) exposure time to get the same quantity of energy on the film
and may allow a rapidly moving object to be photographed without
blurring.

It should be apparent that a system working at finite conjugates will
have an object-side numerical aperture as well as an image-side
numerical aperture and that the ratio NA/NA′ � (object-side
NA)/(image-side NA) must equal the absolute value of the magnifica-
tion. The term “working f-number” is sometimes used to describe the
numerical aperture in f-number terms. If we use the terms “infinity 
f-number” for the f-number defined in Eq. 6.1, then the image-side

1
�
2NA
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working f-number is equal to the infinity f-number times (1 � m),
where m is the magnification.

Another term that is occasionally encountered is the T-stop, or
T-number. This is analogous to the f-number, except that it takes into
account the transmission of the lens. Since an uncoated, many-
element lens made of exotic glass may transmit only a fraction of the
light that a low-reflection coated lens of simpler construction will trans-
mit, such a speed rating is of considerable value to the photographer.
The relationship between f-number, T-number, and transmission is

T-number � (6.4)

Cosine-to-the-fourth

For off-axis image points, even when there is no vignetting, the illu-
mination is usually lower than for the image point on the axis. Figure
6.10 is a schematic drawing showing the relationship between exit
pupil and image plane for point A on axis and point H off axis. The illu-
mination at an image point is proportional to the solid angle which the
exit pupil subtends from the point.

The solid angle subtended by the pupil from point A is the area of
the exit pupil divided by the square of the distance OA. From point H,
the solid angle is the projected area of the pupil divided by the square
of the distance OH. Since OH is greater than OA by a factor equal to
1/cos �, this increased distance reduces the illumination by a factor of
cos2 �. The exit pupil is viewed obliquely from point H, and its project-
ed area is reduced by a factor which is approximately cos �. (This is a
fair approximation if OH is large compared to the size of the pupil; for
high-speed lenses used at large obliquities, it may be subject to signif-
icant errors. See Example A in Chap. 8 for an exact expression.)

Thus the illumination at point H is reduced by a factor of cos3 �. This
is, however, true for illumination on a plane normal to the line OH

f-number
��
�transm�ission�
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Figure 6.10 Relationship between
exit pupil and image points,
used to demonstrate that the
illumination at H is cos4 � times
that at A.



(indicated by the dashed line in Fig. 6.10). We want the illumination
in the plane AH. An illumination of x lumens per square foot on the
dashed plane will be reduced on plane AH because the same number
of lumens is spread over a greater area in plane AH. The reduction fac-
tor is cos �, and combining all the factors we find that

Illumination at H � cos4 � (illumination at A) (6.5)

The importance of this effect on wide-angle lenses can be judged from
the fact that cos4 30° � 0.56, cos4 45° � 0.25, and cos4 60° � 0.06. It
can be seen that the illumination on the film in a wide-angle camera
will fall off quite rapidly.

Note that the preceding has been based on the assumption that the
pupil diameter is constant (with respect to �) and that � is the angle
formed in image space (although many people apply it to the field
angle in object space). The “cosine fourth law” can be modified if the
construction of the lens is such that the apparent size of the pupil
increases for off-axis points, or if a sufficiently large amount of barrel
distortion is introduced to hold � to smaller values than one would
expect from the corresponding field angle in object space. Certain
extreme wide-angle camera lenses make use of these principles to
increase off-axis illumination. The cos4 effect is in addition to any illu-
mination reduction caused by vignetting. It should be remembered
that the cosine-fourth effect is not a “law” but a collection of four cosine
factors which may or may not be present in a given situation.

6.8 Depth of Focus

The concept of depth of focus rests on the assumption that for a given
optical system, there exists a blur (due to defocusing) of small enough
size such that it will not adversely affect the performance of the sys-
tem. The depth of focus is the amount by which the image may be shift-
ed longitudinally with respect to some reference plane (e.g., film,
reticle) and which will introduce no more than the acceptable blur. The
depth of field is the amount by which the object may be shifted before
the acceptable blur is produced. The size of the acceptable blur may be
specified as the linear diameter of the blur spot (as is common in 
photographic applications) (Fig. 6.11) or as an angular blur, i.e., the
angular subtense of the blur spot from the lens. Thus, the linear and
angular blurs (B and �, respectively and the distance D are related by

�� � (6.6)
B′
�
D′

B
�
D
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for a system in air, where the primed symbols refer to the image-side
quantities.

Angular depth of focus

From Fig. 6.12, it can be seen that the depth of field � for a system with
a clear aperture A can be obtained from the relationship

�

This expression can be solved for the depth of field, giving

� � � (6.7)

Note that the depth of field toward the optical system is smaller than
that away from the system. When � is small in comparison with the
distance D, this reduces to

� � � (6.8)

For the image side, the relationship is

�′ � � � F� (f/#) � B′(f/#) (6.9)

where the second, third, and fourth forms of the right-hand side apply
when the image is at the focal point of the system, and F is the system
focal length.

The depth of focus in terms of linear blur-spot size B can be obtained
by substituting Eq. 6.6 into the above. Also, note that the depth of field
� and the depth of focus �′ are related by the longitudinal magnifica-
tion of the system, so that

F 2�
�
A

D′2�
�

A

D�
�
A

D2�
�

A

DB
�
(A ± B)

D2�
�
(A ± D�)

D
�
A

�
� 
� (D ± �)
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Figure 6.11 When an optical sys-
tem is defocused, the image of a
point becomes a blurred spot.
The size of the blur is deter-
mined by the relative aperture
of the system and the focus shift.



�′ � m� 
 m2� (6.10)

The hyperfocal distance of a system is the distance at which the sys-
tem must be focused so that the depth of field extends to infinity. If (D
� �) equals infinity, then ß is equal to A/D, so that

D (hyperfocal) � � (6.11)

The photographic depth of focus

The photographic depth of focus is based on the concept that a defocus
blur which is smaller than a silver grain in the film emulsion will not
be noticeable. This concept also can be applied to pixel size in, for
example, a charge-coupled device (CCD). If the acceptable blur diame-
ter is B, then the depth of focus (at the image) is simply

�′ � ± B(f-number)

�′ � ± (6.12)

The corresponding depth of field (at the object) is from Dnear to Dfar,
where

Dnear � (6.13)

Dfar � (6.14)

and the hyperfocal distance is simply

Dhyp � (6.15)

where D � the nominal distance at which the system is focused (note
that, by our sign convention, D is normally negative)

�fA
�

B

fD (A � B)
��

(fA � DB)

fD (A � B)
��

(fA � DB)

B
�
2NA

F

�
B

A
�
�
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Figure 6.12 Relationships used
to determine the longitudinal
depth of field in terms of a toler-
able angular blur.



A � the diameter of the entrance pupil of the lens
f � the focal length of the lens

Note that there are several false assumptions here. We assume that
the image is a perfect point, with no diffraction effects. We also assume
that the lens has no aberrations and that the blurring on both sides of
the focus is the same. None of these assumptions is correct, but the
equations above do give a usable model for the depth of focus. In prac-
tice, the acceptable blur diameter B is usually determined empirically
by examining a series of defocused images to decide the level of accept-
ability; the equations above are then fitted to the results.

6.9 Diffraction Effects of Apertures

Even if we assume that an infinitely small point source of light is pos-
sible, no lens system can form a true point image, even though the lens
be perfectly made and absolutely free of aberrations. This results from
the fact that light does not really travel in straight-line rays, but
behaves as a wave motion, bending around corners and obstructions to
a small but finite degree.

According to Huygen’s principle of light-wave propagation, each
point on a wave front may be considered as a source of spherical
wavelets; these wavelets reinforce or interfere with each other to form
the new wave front. When the original wave front is infinite in extent,
the new wave front is simply the envelope of the wavelets in the direc-
tion of propagation. At the other extreme, when the wave front is lim-
ited by an aperture to a very small size (say, to the order of a half
wavelength), the new wave front becomes spherical about the aper-
ture. Figure 6.13 shows a plane wavefront incident on a slit AC, which
is in front of a perfect lens. The lens is focused on a screen, EF. We
wish to determine the nature of the illumination on the screen. Since
the lens of Fig. 6.13 is assumed perfect, the optical path lengths AE,
BE, and CE are all equal and the waves will arrive in phase at E, rein-
forcing each other to produce a bright area. For Huygen’s wavelets
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Figure 6.13



starting from the plane wave front in a direction indicated by angle �,
the paths are different; path AF differs from path CF by the distance
CD. If CD is an integral number of wavelengths, the wavelets from A
and C will reinforce at point F. If CD is an odd number of half wave-
lengths, a cancellation will occur. The illumination at F will be the
summation of the contributions from each incremental segment of the
slit, taking the phase relationships into account. It can be readily
demonstrated that when CD is an integral number of wavelengths, the
illumination at F is zero, as follows: if CD is one wavelength, then BG
is one-half wavelength and the wavelets from A and B cancel.
Similarly, the wavelets from the points just below A and B cancel and
so on down the width of the slit. If CD is N wavelengths, we divide the
slit into 2N parts (instead of two parts) and apply the same reasoning.
Thus, there is a dark zone at F when

sin � �

where N � any integer
	 � the wavelength of the light
w � the width of the slit

Thus, the illumination in the plane EF is a series of light and dark
bands. The central bright band is the most intense, and the bands on
either side are successively less intense. One can realize that the
intensity should diminish by considering the situation when CD is
1.5	, 2.5	, etc. When CD is 1.5	, the wavelets from two-thirds of the
slit can be shown (as in the preceding paragraph) to interfere and can-
cel out, leaving the wavelets from one-third of the aperture; when CD
is 2.5	, only one-fifth of the slit is uncanceled. Since the “uncanceled”
wavelets are neither exactly in nor exactly out of phase, the illumina-
tion at the corresponding points on the screen will be less than one-
third or one-fifth of that in the central band.

For a more rigorous mathematical development of the subject, the
reader is referred to the references following this chapter. The mathe-
matical approach is one of integration over the aperture, combined
with a suitable technique for the addition of the wavelets which are
neither exactly in nor exactly out of phase. This approach can be
applied to rectangular and circular apertures as well as to slits.

For a rectangular aperture, the illumination on the screen is 
given by

I � I0 � (6.16)

mi � i � 1,2 (6.17)
�wi sin �i��

	

sin2 m2�
m2
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sin2 m1�
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2
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In these expressions 	 is the wavelength, w the width of the exit aper-
ture, � the angle subtended by the point on the screen, m1 and m2 cor-
respond to the two principal dimensions, w1 and w2, of the rectangular
aperture and I0 is the illumination at the center of the pattern.

When the aperture is circular, the illumination is given by

I � I0 �1 � � �
2

� � �
2

� � �
2

� � �
2

� . . .�
2

(6.18)
� I0� �

2

where m is given by Eq. 6.17 with the obvious substitution of the diam-
eter of the circular exit aperture for the width, w, and J1( ) is the first-
order Bessel function. The illumination pattern consists of a bright
central spot of light surrounded by concentric rings of rapidly decreas-
ing intensity. The bright central spot of this pattern is called the 
Airy disk.

We can convert from angle � to Z, the radial distance from the cen-
ter of the pattern, by reference to Fig. 6.14. If the optical system is rea-
sonably aberration-free, then

l′ �

and to a close approximation, when � is small

Z � � (6.19)

The table of Fig. 6.15 lists the characteristics of the diffraction pat-
terns for circular and slit apertures. The table is derived from Eqs.
6.16 and 6.18, but the data is given in terms of Z and sin U′ rather
than � and w. Note that n′ sin U′ is the numerical aperture NA of the
optical system.

Notice that 84 percent of the energy in the pattern is contained in
the central spot, and that the illumination in the central spot is almost
60 times that in the first bright ring. Ordinarily the central spot and

��w
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the first two bright rings dominate the appearance of the pattern, the
other rings being too faint to notice. The illumination in a diffraction
pattern is plotted in Fig. 6.16. One should bear in mind the fact that
these energy distributions apply to perfect, aberration-free systems
with circular or slit apertures which are uniformly transmitting and
which are illuminated by wave fronts of uniform amplitude. The pres-
ence of aberrations will, of course, modify the distribution as will any
nonuniformity of transmission or wave-front amplitude (see, for exam-
ple, Sec. 6.11).

6.10 Resolution of Optical Systems

The diffraction pattern resulting from the finite aperture of an optical
system establishes a limit to the performance which we can expect
from even the best optical device. Consider an optical system which
images two equally bright point sources of light. Each point is imaged
as an Airy disk with the encircling rings, and if the points are close,
the diffraction patterns will overlap. When the separation is such that
it is just possible to determine that there are two points and not one,
the points are said to be resolved. Figure 6.17 indicates the summation
of the two diffraction patterns for various amounts of separation.
When the image points are closer than 0.5	/NA (NA is the numerical
aperture of the system and equals n′ sin U′), the central maxima of
both patterns blend into one and the combined patterns may appear to
be due to a single source. At a separation of 0.5	/NA the duplicity of
the image points is detectable, although there is no minimum between
the maxima from the two patterns. This is Sparrow’s criterion for res-
olution. When the image separation reaches 0.61	/NA, the maximum
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Figure 6.15 Tabulation of the size of and distribution of energy in the diffraction pattern
at the focus of a perfect lens.



of one pattern coincides with the first dark ring of the other and there
is a clear indication of two separate maxima in the combined pattern.
This is Lord Rayleigh’s criterion for resolution and is the most widely
used value for the limiting resolution of an optical system.*

From the tabulation of Fig. 6.15, we find that the distance from the
center of the Airy disk to the first dark ring is given by

Z � � � 1.22	 (f/#) (6.20)

This is the separation of two image points corresponding to the
Rayleigh criterion for resolution. This expression is widely used in
determining the limiting resolution for microscopes and the like. For
resolution at the image, the NA of the image cone is used; for resolu-
tion at the object, the NA of the object cone is used.

0.61	
�

NA
0.61	

��
n′ sin U′

Stops and Apertures 161

Figure 6.16 The distribution of illumination in the Airy
disk. The appearance of the Airy disk is shown in the
upper right.

*The diffraction pattern of two point images will always differ somewhat from the dif-
fraction pattern of a single point. It is thus possible to detect the presence of two points
(as opposed to one) even in cases where the two points cannot be visually resolved or sep-
arated. This is the source of the occasional claims that a system “exceeds the theoreti-
cal limit of resolution.” In Chap. 11 it is shown that there is a true limit on the resolution
of a sinusoidal line target; the limit on the spatial frequency is v0 � 2NA/	 � 1/	(f/#).



To evaluate the performance limits of telescopes and other systems
working at long object distances, an expression for the angular sepa-
ration of the object points is more useful. Rearranging Eq. 6.19 and
substituting the limiting value of Z from Eq. 6.20, we get, in radian
measure,

� � radians (6.21)

For ordinary visual instruments, 	 may be taken as 0.55 �m, and
using 4.85 � 10�6 radians for 1 second of arc, we find that

� � seconds of arc (6.22)

when w is the aperture diameter expressed in inches. By a series of
careful observations, the astronomer Dawes found that two stars of
equal brightness could be visually resolved when their separation was
4.6/w seconds. Notice that if the Sparrow criterion is used instead of
the Rayleigh criterion in Eq. 6.22, the limiting resolution angle is
4.5/w seconds, which is in close agreement with Dawes’ findings.

It is worth emphasizing here that the angular resolution limit is a
direct function of wavelength and an inverse function of the aperture
of the system. Thus, the limiting resolution is improved by reducing

5.5
�
w

1.22	
�

w
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Figure 6.17 The dashed lines represent the diffraction
patterns of two point images at various separations. The
solid line indicates the combined diffraction pattern. Case
(b) is the Sparrow criterion for resolution. Case (c) is the
Rayleigh criterion.



the wavelength or by increasing the aperture. Note that focal length or
working distance do not directly affect the angular resolution. The lin-
ear resolution is governed by the wavelength and the numerical aper-
ture (NA or f-number), and not by the aperture diameter.

In an instrument such as a spectroscope, where it is desired to sep-
arate one wavelength from another, the measure of resolution is the
smallest wavelength difference, d	, which can be resolved. This is usu-
ally expressed as 	/d	; thus, a resolution of 10,000 would indicate that
the smallest detectable difference in wavelength was 1/10,000 of the
wavelength upon which the instrument was set.

For a prism spectroscope, the prism is frequently the limiting aper-
ture, and it can be shown that when the prism is used at minimum
deviation, the resolution is given by

� B (6.23)

where B is the length of the base of the prism and dn/d	 is the dis-
persion of the prism material.

A diffraction grating consists of a series of precisely ruled lines on a
clear (or reflecting) base. Light can pass directly through a grating, but
it is also diffracted. As with the slit aperture discussed above, at certain
angles the diffracted wavelets reinforce, and maxima are produced when

sin � � ±sin I (6.24)

where 	 is the wavelength, I is the angle of incidence, S is the spacing
of the grating lines, m is an integer, called the order of the maxima,
and the positive sign is used for a transmission grating, the negative
for a reflecting. (Note that a sinusoidal grating has only a first order.)
Since � depends on the wavelength 	, such a device can be used to sep-
arate the diffracted light into its component wavelengths. When used
as indicated in Fig. 6.18, the resolution of a grating is given by

� mN (6.25)

where m is the order and N is the total number of lines in the grating
(assuming the size of the grating to be the limiting aperture of the 
system).

6.11 Diffraction of a Gaussian (Laser) Beam

The illumination distribution in the image of a point as described in
Secs. 6.9 and 6.10 was based on the assumptions that the optical sys-
tem was perfect and that both the transmission and the wave-front
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amplitude were uniform over the aperture. Any change in the intensi-
ty distribution in the beam will change the diffraction pattern from
that described above. Obviously, a similar change in the transmission
of the aperture will produce the same effects.

A “gaussian beam” is one whose intensity cross section follows the
equation of a gaussian, y � e�x2. Laser output beams closely approxi-
mate gaussian beams. From mathematics we know that exponential
functions, such as the gaussian are extremely resistant to transforma-
tions (consider, for example, the integral or differential of e�x).
Similarly, a gaussian beam tends to remain a gaussian beam, as long
as it is “handled” by reasonably aberration-free optics, and the diffrac-
tion image of a point also has a gaussian distribution of illumination.

The distribution of intensity in a gaussian beam is illustrated in 
Fig. 6.19 and can be described by Eq. 6.26.

I (r) � Ioe�2r2/w2 (6.26)

where I (r) � the beam intensity at a distance r from the beam axis
I0 � the intensity on axis
r � the radial distance
e � 2.718.…

w � the radial distance at which the intensity falls to I0/e2, i.e.,
to 13.5 percent of its central value. This is usually
referred to as the beam width, although it is a semi-
diameter. It encompasses 86.5 percent of the beam power.
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Figure 6.18 (Upper) Prism spectrometer. (Lower) Grating
spectrometer.



Beam power

By integration of Eq. 6.26 we find the total power in the beam to be
given by

Ptot � 1/2 �I0w
2 (6.27)

The power passed through a centered circular aperture of radius a is
given by

P (a) � Ptot(1 � e�2a2/w2) (6.28)

The power passed by a centered slit of width 2s is given by

P (s) � Ptot � erf � � (6.29)

where erf (u) � �u

0
e�t2 dt � the error function, which is tabulated in

mathematical handbooks.

Diffraction spreading of a gaussian beam

A gaussian beam has a narrowest width at some point, which is called
the “waist.” This point may be near where the beam is focused or near
where it emerges from the laser. As the beam progresses, it spreads
out according to the following equation:

wz
2 � w0

2 �1 � � �2� (6.30)

where wz � the semidiameter of the beam (i.e., to the 1/e2 points) at a
longitudinal distance z from the beam waist.

w0 � the semidiameter of the beam (to the 1/e2 points) at the
beam waist.

	 � the wavelength

	z
�
�w0

2

s �2�
�

w
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Figure 6.19 Gaussian beam intensity profile.



z � the distance along the beam axis from the waist to the
plane of wz

At large distances it is convenient to know the angular beam spread.
Dividing both sides of Eq. 6.30 by z2, then, as z approaches infinity, 
we get

� � � or � � � (6.31)
z→�

where � is the angular beam spread in radians between the 1/e2

points. For many applications, the gaussian diffraction blur at the
image plane can be found by simply multiplying � from Eq. 6.31 by
the image conjugate distance (s′ from Chap. 2).

Beam truncation

The effect of beam truncation, i.e., stopping down or cutting off the
outer regions of the beam, is discussed by Campbell and DeShazer.
They show that if the diameter of the beam is not reduced below 2(2w),
where w is the beam semidiameter at the 1/e2 points, then the beam
intensity distribution remains within a few percent of a true gaussian
distribution. If the clear aperture is reduced below this value, it will
introduce structure (i.e., rings) into the irradiance patterns, and the
pattern gradually approaches Eq. 6.18 as the aperture is reduced.

A lens aperture large enough to pass a beam with a diameter of 4w
is obviously very inefficient from a radiation transfer standpoint. For
this reason, most systems truncate the beam, very often to the 1/e2

diameter, and the diffraction pattern is altered accordingly. If the
beam is truncated down to 61 percent of the 1/e2 diameter, it is diffi-
cult to see the difference from a uniform beam.

Size and location of a new waist formed by a
perfect optical system

When a gaussian beam passes through an optical system, a new waist
is formed. Its size and location are determined by diffraction (and not
by the paraxial equations of Chap. 2). The waist and focus are at dif-
ferent locations; in a weakly convergent beam, the separation may be
large. The following equations allow calculation of the new waist size
and location:

x′ � (6.32)
�xf 2
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x2 � ��
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w2
2 � � w1

2 � � (6.33)

where w1 � the radius (to the 1/e2 points) of the original waist
w2 � the radius of the new waist formed by the optical system

f � the focal length of the lens
x � the distance from the first focal point of the lens to the

plane of w1

x′ � the distance from the second focal point of the lens to the
plane of w2

Note that x and x′ are usually negative and positive, respectively. Note
also the similarity to the newtonian paraxial equation (Eq. 2.3).

Two points regarding the above are well worth emphasizing. First,
laser researchers speak in terms of a “beam waist.” Note that in the
equations above and in common usage it is described as a radial
dimension, not a diameter; the diameter of the waist is 2w. Second, the
waist and the focus are not the same thing, as a comparison of Eqs.
6.32 and 2.3 will indicate. In most circumstances the difference is triv-
ial and gaussian beams may be handled by the usual paraxial equa-
tions. But when the beam convergence is small (i.e., with an f-number
of a hundred or so), it is possible to distinguish both a focus and a sep-
arate beam waist. For example, if we project a 1-in laser beam
(through a focusable beam expander) on a screen about 50 ft away, we
can focus the beam to get the smallest possible spot on the screen. The
focus is now at the screen. However, there is a location a few feet short
of the screen at which a smaller beam diameter exists. This is the
beam waist; it can be demonstrated by moving the screen (or a sheet
of paper) toward the laser and observing the reduction of the spot size.
Note that with the screen now at this beam waist position, the beam
expander can be refocused to get a still smaller spot on the screen.
Then there will be a new waist still closer to the laser, etc., etc., etc.

Note well that the focus is the smallest spot which can be pro-
duced on a surface at a given, fixed distance. The waist is the small-
est diameter in the beam (see Gaskill, p. 435).

Note also that all the phenomena described in this section result
from the gaussian distribution of beam intensity and not from the fact
that the source may be a laser. The same effects could be produced by
a radially graded filter placed over the aperture of the system. (The
temporal and spatial coherence of a laser beam are, of course, what
make it practical to demonstrate these effects.)
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6.12 The Fourier Transform Lens and
Spatial Filtering

In Fig. 6.20 we have a transparent object located at the first focal
point of lens A. As indicated by the dashed rays in the figure, lens A
images the object at infinity so that the rays originating at the axial
point of the object are collimated. These rays are brought to a focus
at the second focal plane of lens B, where the image of the object is
located.

Now let us realize that Fourier theory allows us to consider the
object as comprised of a collection of sinusoidal gratings of different
frequencies, amplitudes, phases, and orientations. If our object is a
simple linear grating with but a single spatial frequency, it will devi-
ate the light through an angle � according to Eq. 6.24, except that a
sinusoidal grating has but a single diffraction order, the first. Now, if
the object is illuminated by collimated/coherent light, that diffracted
light will be focused as two points in the second focal plane of lens A
(which is indicated as the Fourier plane, midway between the lenses
in Fig. 6.20). The points will be laterally displaced by � � f tan � from
the nominal focus. Thus, if an annular zone in the Fourier plane is
obstructed, all the spatial information of the frequency corresponding
to the radius of the obstruction will be removed (filtered) from the final
image. Thus it can be seen that the Fourier plane constitutes a sort of
map of the spatial frequency content of the object and that this content
can be analyzed or modified in this plane.
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Exercises

1 Find the positions and diameters of the entrance and exit pupils of a 100-
mm focal length lens with a diaphragm 20 mm to the right of the lens, if the
lens diameter is 15 mm and the diaphragm diameter is 10 mm.

ANSWER: Entrance pupil is 25 mm to the right and 12.5 mm in diameter. Exit
pupil is 20 mm to the right and 10 mm in diameter.

2 What is the relative aperture (f-number) of the lens of exercise #1 with
light incident (a) from the left, and (b) from the right?

ANSWER: (a) f/8 (b) f/10

3 A telescope is composed of an objective lens, f � 10 in, diameter � 1 in and
an eyelens, f � 1 in, dia. � 12 in, which are 11 in apart. (a) Locate the entrance
and exit pupils and find their diameters. (b) Determine the object and image
fields of view in radians. Assume object and image to be at infinity.

ANSWER: (a) Entrance pupil is at the objective, diameter 1 in. Exit pupil is 1.1
in to the right of the eyelens and is 0.1 in diameter. (b) For zero vignetting,
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object field is ±0.01818 and image field is ±0.1818. For complete vignetting,
object field is ±0.02727 and image field is ±0.2727.

4 A 4-in focal length f/4 lens is used to project an image at a magnification
of four times (m � �4). What is the numerical aperture in object space and in
image space?

ANSWER: NA � 0.1; NA � 0.025

5 An optical system composed of two thin elements forms an image of an
object located at infinity. The front lens has a 16-in focal length, the rear lens
an 8-in focal length, and the spacing between the two is 8 in. If the exit pupil
is located at the rear lens and there is no vignetting, what is the illumination
at an image point 3 in from the axis relative to the illumination on the axis?

ANSWER: 41 percent

6 A 6-in diameter f/5 paraboloid mirror is part of an infrared tracker which
can tolerate a blur (due to defocusing) of 0.1 milliradians. (a) What tolerance
must be maintained on the position of the reticle with respect to the focal
point? (b) What is the tolerance if the system speed is f/2?

ANSWER: (a) ±0.015 in (b) ±0.0024 in

7 If the hyperfocal distance of a 10-in focal length, f/10 lens is 100 in, (a)
what is the diameter of the acceptable blur spot, and (b) what is the closest
distance at which an object is “acceptably” in focus? (c) Show that the answer
to (b) is always one-half the hyperfocal distance.

ANSWER: (a) 0.111 in (b) 50 in

8 Compare the image illumination produced by an f/8 lens at a point 45°
from the axis with that from an f/16 lens 30° off axis.

ANSWER: The f/16 is 56 percent of the f/8

9 Plot the illumination (in the manner of Fig. 6.16) in the diffraction pat-
tern at the focus of a lens with a square aperture, (a) along a line through the
axis at 90° to a side of the aperture, and (b) along a line at 45° (the diagonal)
to the sides of the aperture.

10 An optical system is required to image a distant point source as a spot of
0.01 mm in diameter. Assuming that all the useful energy in the image spot
will be within the first dark ring, what relative aperture (f-number) must the
optical system have? Assume a wavelength of 0.00055 mm.

ANSWER: f/7.5

11 A pinhole camera has no lens but uses a very small hole some distance
from the film to form its image. If we assume that light travels in straight
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lines, then the image of a distant point source will be a blur whose diameter
is the same size as the pinhole. However, diffraction will spread the light into
an Airy disk. Thus, the larger the hole, the larger the geometrical blur but the
smaller the diffraction pattern. Assume that the sharpest picture will be pro-
duced when the geometrical blur is the same size as the central bright spot of
the Airy disk. What size hole should be used when the film is 10 cm from the
hole? (Hint: Equate the hole diameter to the diameter of the first dark ring of
the Airy disk given by Eq. 6.20.)

ANSWER: 0.037 cm for 	 � 0.55 �m (diameter � �2.44	�f� )

12 What is the resolution limit (at the object) for a microscopic objective
whose acceptance cone has a numerical aperture of (a) 0.25, (b) 0.8, (c) 1.2?

ANSWER: (a) 0.0013 mm, (b) 0.00042 nn, (c) 0.00028 mm

13 What diameter must a telescope objective have if the telescope is to
resolve 11 seconds of arc? If the eye can resolve 1 minute of arc, what is the
minimum power of the telescope?

ANSWER: 0.5 in; 5.5 �

14 Compare the resolution of a prism and a grating. The prism has a
1-in base and its glass has a dispersion of 0.1 per micrometer. The
grating is 1-in wide and is ruled with 15,000 lines per inch.

ANSWER: Prism resolution—2540; grating resolution—15,000 1st order,
30,000 2d order, etc.
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Optical Materials and
Interference Coatings

7.1 Reflection, Absorption, Dispersion

To be useful as an optical material, a substance must meet certain
basic requirements. It should be able to accept a smooth polish, be
mechanically and chemically stable, have a homogeneous index of
refraction, be free of undesirable artifacts, and of course transmit (or
reflect) radiant energy in the wavelength region in which it is to be
used.

The two characteristics of an optical material which are of primary
interest to the optical engineer are its transmission and its index of
refraction, both of which vary with wavelength. The transmission of an
optical element must be considered as two separate effects. At the
boundary surface between two optical media, a fraction of the incident
light is reflected. For light normally incident on the boundary the frac-
tion is given by

R � (7.1)

where n and n′ are the indices of the two media (a more complete
expression for Fresnel surface reflection is given in Sec. 7.9).

Within the optical element, some of the radiation may be absorbed
by the material. Assume that a 1-mm thickness of a filter material
transmits 25 percent of the incident radiation at a given wavelength
(excluding surface reflections). Then 2 mm will transmit 25 percent of
25 percent and 3 mm will transmit 0.25 � 0.25 � 0.25 � 1.56 percent.

(n′ � n)2

��
(n′ � n)2

Chapter

7



Therefore, if t is the transmission of a unit thickness of material, the
transmission through a thickness of x units will be given by

T � tx (7.2)

This relationship is often stated in the following form, where a is
called the absorption coefficient and is equal to �loge t.

T � e�ax (7.3)

Thus, it can be seen that the total transmission through an optical ele-
ment is a sort of product of its surface transmissions and its internal
transmission. For a plane parallel plate in air, the transmission of the
first surface is given (from Eq. 7.1) as

T � 1 � R � 1� � (7.4)

Now the light transmitted through the first surface is partially trans-
mitted by the medium and goes on to the second surface, where it is
partly reflected and partly transmitted. The reflected portion passes
(back) through the medium and is partly reflected and partly trans-
mitted by the first surface, and so on. The resulting transmission can
be expressed as the infinite series

T1.2 � T1T2(K � K3R1R2 � K5(R1R2)
2 � K7(R1R2)

3 � . . .) (7.5)

�

where T1 and T2 are the transmissions of the two surfaces, R2 and R1

are the reflectances of the surfaces, and K is the transmittance of the
block of material between them. (This equation can also be used to
determine the transmission of two or more elements, e.g., flat plates,
by finding first T1,2 and R1,2, then using T1,2 and T3 together, and so on.)

If we set T1 � T2 � 4n/(n � 1)2 from Eq. 7.4 into Eq. 7.5, and assume
that K � 1, we find that the transmission, including all internal reflec-
tions, of a completely nonabsorbing plate is given by

T � (7.6)

This is obviously the maximum possible transmission of an uncoated
plate of index n.

Similarly, the reflection is given by

R � 1 � T � (7.7)
(n � 1)2

��
(n2 � 1)

2n
��
(n2 � 1)

T1T2 K
��
1 � K 2R1R2

4n
��
(n � 1)2

(n � 1)2

��
(n � 1)2
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It should be emphasized that the transmission of a material, being
wavelength-dependent, may not be treated as a simple number over
any appreciable wavelength interval. For example, suppose that a fil-
ter is found to transmit 45 percent of the incident energy between 1
and 2 �m. It cannot be assumed that the transmission of two such fil-
ters in series will be 0.45 � 0.45 � 20 percent unless they have a uni-
form spectral transmission (neutral density). To take an extreme
example, if the filter transmits nothing from 1 to 1.5 �m and 90 per-
cent from 1.5 to 2 �m, its “average” transmission will be 45 percent
within the 1- to 2-�m band. However, two such filters, when combined,
will transmit zero from 1 to 1.5 �m, and about 81 percent from 1.5 to
2 �m, for an “average” transmission of about 40 percent, rather than
the 20 percent which two neutral density filters would transmit.

The photographic density of a filter is the log of its opacity (the re-
ciprocal of transmittance), thus

D � log � �log T

where D is the density and T is the transmittance of the material. Note
that transmittance does not account for surface reflection losses; thus,
density is directly proportional to thickness. To a fair approximation,
the density of a “stack” of neutral density absorption filters is the sum
of the individual densities.

Equation 7.3 can be written to the base 10 if desired. This is done
when the term “density” is used to describe the transmission of, for
example, a photographic filter. The equation becomes

T � 10�density

so that a density of 1.0 means a transmission of 10 percent, a density
of 2.0 means a transmission of 1 percent, etc. Note that densities can
be added. A neutral absorbing filter with a density of 1.0 combined
with a filter of density 2.0 will yield a density of 3.0 and a transmis-
sion of 0.1 � 0.01 � 0.001 � 10�3.

Index dispersion

The index of refraction of an optical material varies with wavelength
as indicated in Fig. 7.1 where a very long spectral range is shown. The
dashed portions of the curve represent absorption bands. Notice that
the index rises markedly at each absorption band, and then begins to
drop with increasing wavelength. As the wavelength continues to
increase, the slope of the curve levels out until the next absorption
band is approached, where the slope increases again. For optical 

1
�
T
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materials we usually need concern ourselves with only one section of
the curve, since most optical materials have an absorption band in the
ultraviolet and another in the infrared and their useful spectral region
lies between the two.

Many investigators have attacked the problem of devising an equa-
tion to describe “the irrational variation of index” with wavelength.
Such expressions are of value in interpolating between, and smoothing
the data of, measured points on the dispersion curve, and also in the
study of the secondary spectrum characteristics of optical systems.
Several of these dispersion equations are listed below.

Cauchy n (	) � a � � � . . . (7.8)

Hartmann n (	) � a � � (7.9)

Conrady n (	) � a � � (7.10)

Kettler-Drude n2 (	) � a � � � . . . (7.11)

Sellmeier n2 (	) � a � � � � . . . (7.12)

Herzberger n (	) � a � b	2 � � (7.13)

Old Schott n2 (	) � a � b	2 � � � � (7.14)

The new Schott catalog uses the Sellmeier equation (Eq. 7.12).
The constants (a, b, c, etc.) are, of course, derived for each individual

material by substituting known index and wavelength values and
solving the resulting simultaneous equations for the constants. The
Cauchy equation obviously allows for only one absorption band at zero
wavelength. The Hartmann formula is an empirical one but does allow
absorption bands to be located at wavelengths c and e. The Herzberger
expression is an approximation of the Kettler-Drude equation and is
reliable through the visible to about 1 �m in the near infrared. In his

f
�
	8

e
�
	6

d
�
	4

c
�
	2

d
��
(	2 � 0.035)2

e
��
(	2 � 0.035)

f	2

�
g � 	2

d	2

�
e � 	2

b	2

�
c � 	2

d
�
e � 	2

b
�
c � 	2

c
�
	3.5

b
�
	

d
�
(e � 	)

b
�
(c � 	)

c
�
	4

b
�
	2
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Figure 7.1 Dispersion curve of
an optical material. The dashed
lines indicate absorption bands.
(Anomolous dispersion.)



later work, Herzberger used 0.028 as the denominator constant. The
Conrady equation is empirical and designed for optical glass in the vis-
ible region. All these equations suffer from the drawback that the
index approaches infinity as an absorption wavelength is approached.
Since little use is made of any material close to an absorption band,
this is usually of small consequence.

Equation 7.14 was used by Schott and other optical glass manufac-
turers as the dispersion equation for optical glass. It is accurate to
about 3 � 10�6 between 0.4 and 0.7 �m, and to about 5 � 10�6 between
0.36 and 1.0 �m. The accuracy of Eq. 7.14 can be improved in the
ultraviolet by adding a term in 	4, and in the infrared by adding a term
in 	�10. More recently, glass manufacturers have switched to Eq. 7.12,
the Sellmeier equation, in order to improve the accuracy.

The dispersion of a material is the rate of change of index with
respect to wavelength, that is, dn/d	. From Figs. 7.1 and 7.2, it can be
seen that the dispersion is large at short wavelengths and becomes
less at longer wavelengths. At still longer wavelengths, the disper-
sion increases again as the long-wavelength absorption band is
approached. Notice in Fig. 7.2 that the glasses have almost identical
slopes for wavelengths beyond 1 �m.

For materials which are used in the visible spectrum, the refractive
characteristics are conventionally specified by giving two numbers, the
index of refraction for the helium d line (0.5876 �m) and the Abbe 
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Figure 7.2 The dispersion curves for four optical glasses and two
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V-number, or reciprocal relative dispersion. The V-number, or V-value,
is defined as

V � (7.15)

where nd, nF, and nC are the indices of refraction for the helium d line,
the hydrogen F line (0.4861 �m), and the hydrogen C line (0.6563 �m),
respectively. Note that 
n � nF � nC is a measure of the dispersion,
and its ratio with nd � 1 (which effectively indicates the basic refract-
ing power of the material) gives the dispersion relative to the amount
of bending that a light ray undergoes.

For optical glass, these two numbers describe the glass type and are
conventionally written (nd � 1):V as a six-digit code. For example, a
glass with an nd of 1.517 and a V of 64.5 would be identified as 517:645.

For many purposes, the index and V-value are sufficient information
about a material. For secondary spectrum work, however, it is neces-
sary to know more, and the relative partial dispersion

PC � (7.16)

is frequently used for this purpose. PC is a measure of the rate of
change of the slope of the index vs. wavelength curve (i.e., the curva-
ture or second derivative). Note that a relative partial dispersion can
be defined for any portion of the spectrum and that most glass catalogs
list about a dozen partials.

The index of refraction values conventionally given in catalogs,
handbooks, etc., are those arrived at by measuring a sample piece in
air, and are thus the index relative to the index of air at the wave-
length, temperature, humidity, and pressure encountered in the mea-
surement. Since the index is used in optical calculations as a relative
number, this causes no difficulty if the index of air is assumed to be 1.0
(unless the optical system is to be used in a vacuum, in which case the
catalog index must be adjusted for the index of air; see Sec. 1.2).

7.2 Optical Glass

Optical glass is almost the ideal material for use in the visual and
near-infrared spectral regions. It is stable, readily fabricated, homoge-
neous, clear, and economically available in a fairly wide range of char-
acteristics.

Figure 7.3 gives some indication of the variety of the available optical
glasses. Each point in the figure represents a glass whose nd is plotted
against its V-value; note that the V-values are conventionally plotted in
reverse, i.e., descending, order. Glasses are somewhat arbitrarily divided

nd � nC
�
nF � nC

nd � 1
�
nF � nC
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into two groups, the crown glasses and the flint glasses, crowns having a
V-value of 55 or more if the index is below 1.60, and 50 or more for an
index above 1.60; the flint glasses are characterized by V-values less
than these limits. The “glass line” in Fig. 7.3 is the locus of the ordinary
optical glasses made by adding lead oxide to crown glass. These glasses
are relatively cheap, quite stable, and readily available.

The addition of lead oxide to crown glass causes its index to rise, and
its V-value to decrease, along the glass line. Immediately above the
glass line are the barium crowns and flints; these are produced by the
addition of barium oxide to the glass mix. In Fig. 7.3 these are identi-
fied by the symbol Ba for barium. This has the effect of raising the
index without markedly lowering the V-value. The rare earth glasses
are a completely different family of glasses based on the rare earths
instead of silicon dioxide (which is the major constituent of the other
glasses). These are identified by the symbol La in Fig. 7.3, signifying
the presence of lanthanum.

The table of Fig. 7.4 lists the characteristics of the most common
optical glass types. Each glass type in the table is available from the
major glass manufacturers, so that all types listed are readily obtain-
able. The index data given are taken from the Schott catalog; the
equivalent glasses from other suppliers may have slightly different
nominal characteristics.

Formerly, optical glass was made by heating the ingredients in a large
clay pot, or crucible, stirring the molten mass for uniformity, and care-
fully cooling the melt. The hardened glass was broken into chunks
which were then sorted to select pieces of good quality. Currently the
molten glass is more likely to be poured into a large slab mold; this gives
better control over the size of the pieces of glass available. Many barium
glasses and all the rare earth glasses are processed in platinum cru-
cibles, since the highly corrosive molten glass tends to attack the walls
of a clay pot and the dissolved pot materials affect the glass character-
istics. In extremely large volume production, a continuous process is
used, with the raw materials going in one end of the furnace and emerg-
ing as extruded strip or rod glass at the other end. Raw glass is fre-
quently pressed into blanks, which are roughly the size and shape of the
finished element. The final stage before the glass is ready for use is
annealing. This is a slow cooling process, which may take several days
or weeks, and which relieves strains in the glass, assures homogeneity
of index, and brings the index up to the catalog value.

The characteristics of optical glass vary somewhat from melt to melt
(because of variations in composition and processing) and also due to
variations in annealing procedures. Ordinarily the lower index glass-
es (to n � 1.55), are supplied to a tolerance of ±0.001 on the catalog
value of nd, the higher index glasses may vary ±0.0015 from the nom-
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inal index. Similarly the V-value will vary from the catalog value.
Typical tolerances on V-value are ±0.3 for V-values below 46; ±0.4 from
46 to 58; ±0.5 for V-values above 58. Most glass manufacturers will
select glass to closer tolerances at an increased price.

Optical glass may be obtained in hundreds of different types; com-
plete information is best obtained from the manufacturer’s catalog.

Figure 7.5 gives an indication of the spectral transmission of optical
glasses. In general, most optical glasses transmit well from 0.4 to 2.0
�m. The heavy flints tend to absorb more at the short wavelengths and
transmit more at the long wavelengths. The rare earth glasses also
absorb in the blue region. Since the transmission of a glass is affected
greatly by minute impurities, the exact characteristics of any given
glass may vary significantly from batch to batch, even when made by
the same manufacturer.

Most optical glasses turn brown (or black) when exposed to nuclear
radiation because of increased absorption of the short (blue) wave-
lengths. To provide glasses which can be used in a radiation environ-
ment, the glass manufacturers have developed “protected” or
“nonbrowning” glasses containing cerium. These glasses will tolerate
radiation doses to the order of a million roentgens. Fused quartz glass,
which is discussed in the next section, is almost pure SiO2 and is
extremely resistant to radiation browning.

Although not strictly “optical glass,” ordinary window glass and
plate glass are frequently used when cost is an important factor. The
index of window glass ranges from about 1.514 to about 1.52, depend-
ing on the manufacturer. Ordinary window glass is slightly greenish,
due primarily to modest amounts of absorption in the red and blue
wavelengths; the red absorption continues to about 1.5 �m. Window
glass is also available in “water white” quality, without the greenish
tint. For elements with one or two plane surfaces and with modest pre-
cision requirements, window glass can often be used without further
processing; the accuracy of the plane surfaces is surprisingly good. By
special selection, plane parallels can be obtained which meet fairly rig-
orous requirements. The secret here is to avoid pieces cut from the
edge of the large sheets in which this type of glass is made; the center
sections are usually far more uniform in surface and thickness. Note
that the surface of “float glass” is significantly less smooth by a factor
of 3 or 4, although recent process improvements have brought the sur-
faces up to that of window and plate glass.

7.3 Special Glasses

Several glasses are available which differ sufficiently from the stan-
dard optical glasses to deserve special mention.
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Low-expansion glasses. In applications where the elements of an opti-
cal system are subject to strong thermal shocks (as in projection 
condensers) or where extreme stability in the presence of temperature
variations is necessary (such as astronomical telescope reflectors or
laboratory instruments), it is desirable to use a material with a low
thermal coefficient of expansion.

A number of borosilicate glasses are made with expansion coeffi-
cients which are less than half that of ordinary glass. Corning’s Pyrex
#7740 and #7760 have expansion coefficients between 30 and 40 �
10�7/°C. The index of refraction of these glasses is about 1.474 with a
V-value of about 60, and their density is about 2.2. Unfortunately they
are usually afflicted with veins and striations so that they are suitable
only for applications such as condensing systems when used as refract-
ing elements. They are widely used for test plates and for mirrors.
Some of these materials are yellowish or brownish, but others are
available in a clear white grade.

Another low-expansion glass is fused quartz, which is also called
fused silica glass. This material is essentially pure (more or less,
depending on the grade and manufacturer) silicon dioxide (SiO2) and
has an extremely low expansion coefficient of 5.5 � 10�7/°C. It was
originally made by fusing powdered crystalline quartz. Fused quartz
can be obtained in grades with homogeneity equal to that of optical
glass. Fused glass is a completely different material than crystalline
quartz. Its index is 1.46 versus 1.55; it is amorphous (glassy) without
crystalline structure; and it is not birefringent, as is quartz. Fused
quartz has excellent spectral transmission characteristics, extending
further into both the ultraviolet and infrared than ordinary optical
glass. For this reason it is frequently used in spectrophotometers,
infrared equipment, and ultraviolet devices. The excellent thermal
stability of fused quartz is responsible for its use where extremely pre-
cise reflecting surfaces are required. Large mirrors and test plates are
frequently made from fused quartz for this reason. As previously men-
tioned, pure fused quartz is highly resistant to radiation browning.
The index of refraction and transmission of fused quartz are given in
Fig. 7.6. Note that the absorption bands indicated are not of the type
indicated in Fig. 7.1, but are due to impurities and are thus subject to
elimination, as indicated by the range of transmissions given.

A new class of materials, which are partially crystallized glasses, is
available for use as extremely thermally stable mirror substrates,
since they can be fabricated with a zero thermal expansion coefficient.
Owens-Illinois CER-VIT was the original material; Corning ULE and
Schott ZERODUR have similar properties. These materials can be tai-
lored to have a zero thermal expansion coefficient (plus or minus about
1 � 10�7) at a given temperature. The zero thermal expansion coeffi-
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cient results from the mixture of crystals (with a negative coefficient)
and amorphous glass with a positive coefficient. These materials tend
to be brittle, yellow or brown, and to scatter light, so they are not suit-
able for refracting optics.

Infrared transmitting glasses. A number of special “infrared” glasses are
available. Some of these are much like extremely dense flint glasses,
with index values of 1.8 to 1.9 and transmitting to 4 or 5 �m. The
arsenic glasses transmit even further into the infrared. Arsenic-modi-
fied selenium glass transmits from 0.8 to 18 �m, but will soften and flow
at 70°C. It has the following index values: 2.578 at 1.014 �m; 2.481 at 5
�m; 2.476 at 10 �m; 2.474 at 19 �m. Arsenic trisulfide glass transmits
from 0.6 to 13 �m and is somewhat brittle and soft. Index values: 2.6365
at 0.6 �m; 2.4262 at 2 �m; 2.4073 at 5 �m; 2.3645 at 12 �m.

Figure 7.6 Optical characteristics of fused quartz.



Gradient index glass. As indicated in Chap. 1, if the index of refraction
is not uniform, light rays travel in curved paths rather than in straight
lines. In visualizing this, it often helps to remember that the light rays
curve toward the region of higher index. If the index varies in a con-
trolled way, this property may be advantageously utilized. Glass can
be doped by infusion with other materials, typically by the immersion
of the glass into a bath of molten salts to effect an ion exchange which
produces a changed index. A gradient also can be produced by fusing
together layers of glasses with differing indexes. Several types of index
gradient are useful in optical systems. A radial gradient has an index
which varies with the radial distance from the optical axis. An axial
gradient varies the index with the distance along the axis. A spherical
gradient varies the index as a function of the radial distance from an
axial point. An axial gradient at a spherical surface has an effect on
the aberrations which is quite analogous to that of an aspheric surface.
A radial gradient can produce lens power in a plano-plano element.
For example, a plano element whose index varies as a function of the
radial distance r according to

n (r) � n0(1 � Kr2)

and has a length L will have a focal length given by

f �

and a back focal length of

bf l �

This effect is the basis of the GRIN rod lens and the SELFOC lens.

7.4 Crystalline Materials

The valuable optical properties of certain natural crystals have been
recognized for years, but in the past the usefulness of these materials
was severely limited by the scarcity of pieces of the size and quality
required for optical applications. However, many crystals are now
available in synthetic form. They are grown under carefully controlled
conditions to a size and clarity otherwise unavailable.

The table of Fig. 7.7 lists the salient characteristics of a number of
useful crystals. The transmission range is indicated in micrometers for
a 2-mm-thick sample; the wavelengths given are the 10 percent trans-
mission points. Indices are given for several wavelengths in the 
transmission band.

1
���
n0 �2K� tan (L �2K� )

1
���
n0 �2K� sin (L �2K� )
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Crystal quartz and calcite are infrequently used because of their
birefringence, which limits their usefulness almost entirely to polariz-
ing prisms and the like. Sapphire is extremely hard and must be
processed with diamond powder. It is used for windows, interference
filter substrates, and occasionally for lens elements. It is slightly bire-
fringent, which limits the angular field over which it can be used. The
halogen salts have good transmission and refraction characteristics,
but their physical properties often leave much to be desired, since they
tend to be soft, fragile, and occasionally hygroscopic.

Germanium and especially silicon are widely used for refracting ele-
ments in infrared devices. They are much like glass in their physical
characteristics, and can be processed with ordinary glass-working
techniques. Both are metallic in appearance, being completely opaque
in the visible. Their extremely high index of refraction is a joy to the
lens designer since the weak curvatures which result from the high
index tend to produce designs of a quality which cannot be duplicated
in comparable glass systems. Special low-reflection coatings are nec-
essary since the surface reflection (per Eq. 7.1 et seq.) is very high, for
example, 36 percent per uncoated germanium surface. Zinc sulfide,
zinc selenide, and AMTIR are also widely used in infrared systems.

Worthy of special mention is calcium fluoride, or fluorite. This mate-
rial has excellent transmission characteristics in both ultraviolet and
infrared, which make it valuable for instrumentation purposes. In
addition, its partial dispersion characteristics are such that it can be
combined with optical glass to form a lens system which is free of sec-
ondary spectrum. Its physical properties are not outstanding since it
is soft, fragile, resists weathering poorly, and has a crystal structure
which sometimes makes polishing difficult. In exposed applications,
the fluorite element can sometimes be sandwiched between glass ele-
ments to protect its surfaces. The table of Fig. 7.8 lists selected index
and transmission values for fluorite. Natural fluorite has been used in
microscope objectives for many, many years. The FK glasses, especial-
ly FK51, FK52, and FK54, share many of fluorite’s characteristics and
are very useful in correcting secondary spectrum.

7.5 Plastic Optical Materials

Plastics are rarely used for high precision optical elements. A great
deal of effort was made to develop plastics for optical systems during
the Second World War, and a few systems incorporating plastics were
produced. Since then, the technology of fabrication of plastic optics has
advanced significantly, and today, in addition to novelty items such as
toys and magnifying glasses, plastic lenses can be found in a multitude
of optical applications, including inexpensive, disposable camera lens-
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Figure 7.7 Characteristics of optical crystals.
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es, many zoom lenses, projection TV lenses, and even some high-
quality camera lenses. The low cost of mass-produced plastic optics is
one important factor in this popularity; another is the ease of produc-
tion of aspheric surfaces. Once the aspheric mold has been fabricated,
an aspheric surface is as easy to make as is a spherical surface (in
marked contrast to glass optics). The rule of thumb that the introduc-
tion of an aspheric surface allows the elimination of an element from
the system attests to the value of optical plastic materials. This
aspheric capability largely offsets the unfortunate fact that the num-
ber of suitable optical plastics is very small and that there are only rel-
atively low index materials in that number.

In considering a venture into the plastic optics arena, one is well
advised to seek out a specialist in making plastic optics. Not only is the
typical injection molder incapable of making good optics, but he or she
also has no conception of what is required to do so. The successful fab-
ricators have developed good, reliable sources of consistently high-
quality raw materials and material handling techniques, and they
have molding machines which have been adapted to the special
requirements of optical work. Temperature control is extremely critical,
and a longer cycle time is necessary to achieve an optical level of pre-
cision. I encountered an extreme case a few years ago. I had designed
a visual system for a client who insisted (against my advice) not only
on patronizing an inexperienced (in optics) injection molder but also on

Figure 7.8 Index and transmission of calcium fluoride (CaF2) for various
wavelengths.



using an unusual material. The result was a system which you liter-
ally could not see through.

In addition to the general, smooth aspheric capability, plastics are
widely used to make Fresnel lenses, where fine steps are necessary.
The condenser system in overhead projectors and the field lenses in
the viewfinders of single-lens reflex cameras are examples of plastic
Fresnel lenses (see Sec. 9.6). Another currently popular application is
in diffractive optics (discussed at greater length in Chaps. 9 and 13),
where the diffractive surface is basically a Fresnel surface whose step
height is on the order of a half wavelength.

Another advantage in mass production is the ability to mold both
the lens element and its mounting cell in one shot. The cells of an
assembly can in fact be designed so that the lens assembly simply
snaps together, and a drop of a suitable solvent can make the assem-
bly permanent.

The obvious advantages of plastic—that it is light and relatively
shatterproof—are offset by a number of disadvantages. It is soft and
scratches easily. Except by molding, it is difficult to fabricate. Styrene
plastic is frequently hazy, scatters light, and is occasionally yellowish.
Plastics tend to soften at 60 to 80°C. In some plastics the index is
unstable and will change as much as 0.0005 over a period of time. Most
plastics will absorb water and change dimensionally; almost all are
subject to cold flow under pressure. The thermal expansion coefficient
is almost 10 times that of glass, being 7 or 8 � 10�5/°C.

The change of index with temperature for plastics is very large
(about twenty times that of glass) and negative. Thus, maintaining
focus over a range of temperature is a significant problem for plastic
optics. Often they must be athermalized as well as achromatized. The
density of plastics is low, usually to the order of 1.0 to 1.2. The char-
acteristics of some of the most widely used optical plastics are sum-
marized in Fig. 7.9.

Another optical application for plastics is in replication. In this
process a precisely made master mold is vacuum-coated with a release,
or parting layer, plus any required high- or low-reflection coatings.
(The nature of the release layer is usually considered proprietary, but
very thin layers of silver, salt, silicone, or plastic have been publicly
mentioned.) Next, a few drops of low-shrinkage epoxy are pressed out
into a thin (ideally about 0.001 or 0.002 in thick) layer between the
master and a closely matching substrate. The substrate may be Pyrex,
ceramic, or very stable aluminum (for reflector optics), or glass (for
refracting optics). When the epoxy has cured, the master is removed
and a reasonably precise (negative) replica is left on the substrate.
This process has several advantages. For example, any surface
(including aspherics) for which a master can be made can be replicat-
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ed relatively inexpensively, since the master can be used over and over.
Other advantages are that a mirror can be made an integral part of its
mount, the bottom of a blind hole can have an optical polish and fig-
ure, and extremely thin and lightweight parts can be produced. In
many cases these things are effectively impossible with standard opti-
cal fabrication techniques. The limitations to replicated parts are the
inherent softness of the epoxy and the change in the surface figure
from that of the mold.

7.6 Absorption Filters

Absorption filters are composed of materials which transmit light selec-
tively; that is, they transmit certain wavelengths more than others. A
small percentage of the incident light is reflected, but the major portion
of the energy which is not transmitted through the filter is absorbed by
the filter material. Obviously, every material discussed in the preceding
sections of this chapter is, in the broadest sense, an absorption filter,
and occasionally these materials are introduced into optical systems as
filters. However, most filters are made by the addition of metallic salts

Figure 7.9 Properties of several optical plastics. (From Lytel and Altman.) Note that
index values may vary significantly from one manufacturer to another.



to clear glass or by dyeing a thin gelatin film to produce a more selective
absorption than is available in “natural” materials.

The prime source of dyed gelatin filters is the Eastman Kodak
Company, whose line of Wratten filters is widely used for applications
where the versatility of dyed gelatin is required and the environmen-
tal requirements are not too severe. Gelatin filters are usually mount-
ed between glass to protect the soft gelatin from damage.

The number of coloring materials which are suitable for use in 
optical filter glass is limited, and the types of filter glass available are
thus not as extensive as one might desire. In the visible region, there
are several main types. The red, orange, and yellow glasses all trans-
mit the red and near-infrared and have a fairly sharp cutoff, as indi-
cated in Fig. 7.10. The position of this cutoff determines the apparent
color of the filter. Green filters tend to absorb both the red and blue
portions of the spectrum. Their transmission curves often resemble the
spectral sensitivity curve of the eye. Blue optical glass filters can be a
disappointment, since they occasionally transmit not only blue light,
but some green, yellow, orange, and frequently a sizable amount of red
light as well. The purple filters transmit both the red and blue ends of
the spectrum, with fair suppression of the yellow and green spectral
regions. Filter glass is manufactured by most optical glass companies
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Figure 7.10 Spectral transmission curves for several optical glass filters.
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as well as a number of establishments which make commercial colored
glass (as opposed to “optical” glass, which is more carefully controlled).

The transmission characteristics of glass filters vary from melt to
melt for any given type. If a filter application requires that the trans-
mission be accurately controlled, it is frequently necessary to adjust
the finished thickness of the filter to compensate for these variations.
The red filters are probably the most variable; since they are sensitive
to heat, some red glasses cannot be re-pressed into blanks. Spectral
transmission data for filters is usually given for a specific thickness
and includes the losses due to Fresnel surface reflections. To deter-
mine the transmission for thicknesses other than the nominal value,
the transmittance, that is, the “internal” transmission of the piece
without the reflection losses, must be determined. In most cases, it is
sufficient to divide the transmission by Eq. 7.4 to get the transmit-
tance. Then Eq. 7.2 or 7.3 can be used to determine the transmittance
of the new thickness. This transmittance times the T of Eq. 7.4 will
then give the total transmission for the filter to a reasonable accuracy.

This process is greatly simplified by the use of a log-log plot of the
transmittance. The Schott catalog of filter glass makes use of this type
of scale. A transparent overlay makes it possible to evaluate instantly
the effect of a thickness change. A study of Fig. 7.11 will indicate the
utility of this type of a transmittance plot; the same filter is shown in
two thicknesses on a log-log scale in the upper figure and on a linear
scale in the lower. Against the log-log scale, the thickness change is
effected by a simple vertical displacement of the plot. The amount of
the displacement is given by the thickness scale at the right. Notice
how much more information this type of plot can give (and how much
more is required to prepare one!). The data plotted in this form is
transmittance; to determine the total transmission of the filter, the
surface reflection losses must be taken into account, either by Eq. 7.4
or 7.5.

Glass filters are also available to transmit either the ultraviolet or
infrared regions of the spectrum without transmitting the visible.
Typical transmission plots for these filters are shown in Fig. 7.12.
Heat-absorbing glasses are designed to transmit visible light and
absorb infrared energy. These are frequently used in projectors to pro-
tect the film or LCD from the heat of the projection lamp. Since they
absorb large quantities of radiant energy, they become hot themselves
and must be carefully mounted and cooled to avoid breakage from
thermal expansion. From the spectral transmission characteristics
given in Fig. 7.12, it is apparent that the phosphate heat-absorbing
glass is more efficient than the Aklo; the phosphate glass is subject to
large bubbles and inclusions which do not, however, prevent its use in
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most applications. See also the discussion of “hot” and “cold” mirrors
in Sec. 7.10.

7.7 Diffusing Materials and Projection
Screens

A piece of white blotting paper is an example of a (reflecting) diffusing
material. Light which strikes its surface is scattered in all directions;
as a result, the paper appears to have almost the same brightness
regardless of the angle at which it is illuminated or the angle from
which it is viewed. A perfect, or lambertian, diffuser is one which has
the same apparent brightness from any angle; thus the radiation emit-
ted per unit area in the surface is given by I0 cos �, where � is the angle

Figure 7.11 Spectral transmittance of Schott KG2 heat-absorbing filter glass. The upper
graph is plotted on a log-log scale. Note that the vertical spacing between the two plots
is equal to the distance from 2 to 5 on the thickness scale at the right. The same data is
plotted on a conventional linear scale in the lower figure for comparison.
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to the surface normal and I0 is the intensity of an element of area in a
direction perpendicular to the surface.

There are a number of quite good reflecting diffusers with relative-
ly high efficiencies. Matte white paper is a very convenient one and
reflects 70 to 80 percent of the incident visible light. Magnesium oxide
and magnesium carbonate are frequently used in photometric work
since their efficiencies are high, to the order of 97 or 98 percent.

The brightness (luminance) of a perfectly diffuse reflector is propor-
tional to the illumination falling on it and to its reflectivity. If the illu-
mination is measured in footcandles, multiplication by the reflectivity
yields the brightness in foot-lamberts. The brightness in lamberts is
given by the illumination in lumens per cm2 times the reflectivity, and
if this product is divided by �, the result is the brightness in candles
per cm2, or in lumens per steradian per cm2. (See Chap. 8 for more
material on photometric considerations.)

As indicated above, a perfectly diffuse surface appears to have the
same brightness regardless of the angle at which it is viewed. A projec-

Figure 7.12 Transmission characteristics of special-purpose glass filters. UV
transmitting: solid line, Corning 7-60; dashed, Corning 7-39. IR transmitting sol-
id, Corning 7-56 (#2540); dashed, Corning 7-69; dotted, Schott UG-8. Heat
absorbing: solid, Corning I-59 extra light Aklo; dashed, Pittsburgh Plate Glass
#2043 Phosphate—2 mm; dotted, Corning I-56 dark shade Aklo.



tion screen which is not perfectly diffuse can have a brightness ranging
from zero to that of the projector light source. For example, consider a
perfect mirror screen in the shape of an ellipsoid, with the viewer’s eye
placed at one focus and the projector at the other. All of the light will be
reflected to the eye; none will be scattered. From this eye position the
screen will have the same brightness as if one looked directly into the
projection lens; when viewed from any other location, the screen will
appear completely dark. The gain of a projection screen is the ratio of
its brightness to that of a perfectly diffuse (or lambertian) screen,
which by definition has a gain of 1.0. A diffuse screen can be viewed
from any direction, and its brightness, while low, is independent of the
viewing angle. The higher the gain of a screen, the smaller the angle
over which it has its rated gain. Beaded screens and facetted, lenticu-
lar screens are used to concentrate and distribute the light in a con-
trolled manner. Aluminum paints are used to coat screens which must
maintain polarization, and with a smooth curved surface can achieve
gains as high as 4.0 in commercial products. Beaded screens can
achieve a gain as high as 10, but only over an extremely restricted
angle. Many projection screens are rated at a gain of about 2.0.

Transmitting diffusers are used for such applications as rear projec-
tion screens and to produce even illumination. The most commonly
used are opal glass and ground glass (Fig. 7.13). Opal glass contains a
suspension of minute colloidal particles and diffuses by multiple scat-
tering from these particles. The transmitted light is slightly yellowish
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Figure 7.13 Polar intensity plots
of diffusing materials. (Left) For
a “perfect diffuser, the intensity
of a unit area of the surface
varies with cos �. (Right) The
relative intensities of single-
and double-ground glass and
flashed opal glass.
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since the shorter wavelengths are scattered more than the longer.
Opal glass is ordinarily used as flashed opal, which is a thin layer of
opal glass fused to a supporting sheet of clear glass. The diffusion of
flashed opal is quite good. When illuminated normally, the brightness
at 45° from the normal is about 90 percent of what one would expect
from a perfect diffuser. Its total transmission is quite low, about 35 or
40 percent. It should be noted that, since good diffusion means that the
incident light is scattered into 2� steradians, the axial brightness of a
rear-illuminated screen of good diffusion is very low when compared
with a poor diffuser.

Ground glass is produced by fine grinding (or etching) the surface of a
glass plate to produce a large number of very small facets which refract
the incident light more or less randomly. The total transmission of
ground glass is about 75 percent. This transmission is quite strongly
directional, and ground glass is far from a perfect diffuser. Its character-
istics vary somewhat, depending on the coarseness of the surface.
Typically, for a normally illuminated surface, the brightness at 10° from
the normal is about 50 percent of the normal brightness; at 30°, the
brightness is about 2.5 percent of the brightness at the normal. This
characteristic is of course quite useful when partial diffusion is desired.
By combining two sheets of ground glass (with the ground faces in con-
tact), the transmission is lowered about 10 percent but the diffusion is
improved; at 20° to the normal, the brightness is about 20 percent; at
30°, about 7 percent. With two sheets, the diffusion can be increased by
spacing them apart, although this will destroy their utility as a projec-
tion screen.

A sheet of tracing paper has diffusion characteristics quite similar to
ground glass, and there are several commercially available plastic screen
materials which are somewhat better diffusers than ground glass. The
plastic surface also can be shaped to control the beam spread.

A rear projection screen, when used in a lighted room, is illuminated
from both sides. The room light reduces the contrast of the projected
image. This situation is sometimes alleviated by introducing a sheet of
gray glass (that is, a neutral filter) between the diffusing screen and the
observer. When this is done, the light from the projector is reduced by a
factor of T, the transmission of the gray glass, but the room light is
reduced by T2, since the room light must pass through the gray glass
twice to go from the room to the diffuser and back to the observer’s eye.

7.8 Polarizing Materials

Light behaves as a transverse wave in which the waves vibrate 
perpendicular to the direction of propagation. If the wave motion is 
considered as a vector sum of two such vibrations in perpendicular
planes, then plane polarized light results when one of the two compo-



nents is removed from a light beam. Plane polarized light can be pro-
duced by passing the radiation from an ordinary source through a
polarizing prism, several types of which are available. These prisms
depend on the birefringent characteristic of calcite (CaCO3), which has
a different index of refraction for the two planes of polarization. Since
light of one polarization is refracted more strongly than the other, it is
possible to separate them either by total internal reflection (as in the
Nicol and Glan-Thompson prisms) or by deviation in different direc-
tions (as in the Rochon and Wollaston prisms).

Such prisms are large, heavy, and expensive. Sheet polarizers, which
are made by aligning microscopic crystals in a suitable base, are thin,
light, relatively inexpensive, useful over a wide field of view, and simple
to fabricate into an almost unlimited range of sizes and shapes. Thus,
despite the fact that they are not quite as efficient as a good prism polar-
izer and are not effective over as large a wavelength range, they have
largely supplanted prisms for the great majority of applications where
polarization is required. The Polaroid Corporation of Cambridge,
Massachusetts, produces a number of types of sheet polarizers. For work
in the visible region, several types are available, depending on whether
optimum transmission or optimum extinction (through crossed polariz-
ers) is desired. Special types are available for use at high temperatures
and also for use in the near-infrared (0.7 to 2.2 �m). Polaroid also pro-
duces circular (as opposed to plane) polarizers in sheet form.

Since a plane polarizer will eliminate half the energy, it is obvious
that the maximum transmission of a “perfect” polarizer in a beam of
unpolarized light will be 50 percent. Practical values range from 25 to
40 percent for sheet Polaroid, depending on the type. If two polarizers
are “crossed,” that is, oriented with their polarizing axes at 90°, the
transmission will be zero if the polarization is complete. This can be
achieved with Nicol prisms, but the sheet polarizers have a residual
transmission ranging from 10�6 to 5 � 10�4, again dependent on the
type. The transmission characteristics of sheet polarizers are wave-
length-dependent as well.

When two polarizers are placed in a beam of unpolarized light, the
transmission of the pair depends on the relative orientation of their
polarization axes. If � is the angle between the axes, then the trans-
mission of the pair is given by:

T � K 0 cos2 � � K90 sin2 � (7.17)

where K0 is the maximum transmission and K90 is the minimum.
Typical value pairs for K0 and K90 are 42 percent and 1 or 2 percent; 32
percent and 0.005 percent; 22 percent and 0.0005 percent.

Reflection from the surface of a glass plate may also be used to pro-
duce plane polarized light. When light is incident on a plane surface at
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Brewster’s angle, one plane of polarization is completely transmitted
(if the glass is perfectly clean) and about 15 percent of the other is
reflected. This occurs when the reflected and refracted rays are at 90°
to each other; thus, Brewster’s angle is given by

I � arctan (7.18)

The reflected beam is thus completely polarized and the transmitted
beam partially so. The percentage of polarized light in the transmitted
beam can be increased by using a stack of thin plates all tilted to
Brewster’s angle. For an index of 1.52, Brewster’s angle is 56.7°. Note
that Brewster’s angle is the angle at which the tangent term in Eq.
7.19 goes to zero.

The subject of polarized light is treated at greater length in texts
devoted to physical optics, to which the reader is referred. Two addi-
tional points are worth noting: one, interference filters (Sec. 7.9) are
usually polarizing and are occasionally used as polarizers; and two,
opal glass and other diffusers are excellent depolarizers, as are inte-
grating spheres.

7.9 Dielectric Reflection and Interference
Filters

The portion of the light reflected (Fresnel reflection) from the surface
of an ordinary dielectric material (such as glass) is given by

R � � � � (7.19)

where I and I′ are the angles of incidence and refraction, respectively.
The first term of Eq. 7.19 gives the reflection of the light which is
polarized normal to the plane of incidence (s-polarized), and the second
term the reflection for the other plane of polarization (p-polarized). As
indicated in Sec. 7.1, at normal incidence Eq. 7.19 reduces to

R � (7.20)

The variation of reflection from an air-glass interface as a function of
the angle of incidence (I) is shown in Fig. 7.14, where the solid line is
R, the dashed line is the sine term, and the dotted line is the tangent
term. Notice that the dotted line drops to zero reflectivity at
Brewster’s angle (Eq. 7.18).

The reflection from more than one surface can be treated as indicat-
ed by Eq. 7.5 when the separation between the surfaces is large com-
pared to the wavelength of light. However, when the surface-to-surface
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separation is small, then interference between the light reflected from
the various surfaces will occur and the reflectivity of the stack of sur-
faces will differ markedly from that given by Eq. 7.5. (At this point the
reader may wish to refer to the discussion of interference effects con-
tained in the first chapter.)

Optical coatings are thin films of various substances, notably mag-
nesium fluoride (MgF2, n � 1.38), zinc sulfide (ZnS, n � 2.3), silicon
monoxide (SiO, n � 1.86), tantalum pentoxide (Ta2O5, n � 2.15), tho-
rium fluoride (ThF4), lanthanum trifluoride (LaF3, n � 1.57), cerium
fluoride (CeF3, n � 1.60), hafnium oxide (HfO2, n � 2.05), neodmium
fluoride (NdF3) and yttrium oxide (Y2O3, n � 1.85), among others,
which are deposited in layers on an optical surface for the purpose of
controlling or modifying the reflection and transmission characteris-
tics of the surface. Such films have an optical thickness (index times
mechanical thickness) which is a fraction of a wavelength, usually one-
quarter or one-half wavelength. The deposition of thin films is carried
out in a vacuum and is done by heating the material to be deposited to
its evaporation temperature and allowing it to condense on the surface
to be coated. The thickness of the film is determined by the rate of
evaporation (or more precisely, condensation) and the length of time
the process is allowed to continue. Since interference effects produce
colors in the light reflected from thin films, just as in oil films on wet
pavements, it is possible to judge the thickness of a film by the appar-
ent color of light reflected from it. Simple coatings can be controlled
visually by utilizing this effect, but coatings consisting of several lay-
ers are often monitored photoelectrically, using monochromatic light,
so that the sinusoidal rise and fall of the reflectivity can be accurately
assessed and the thickness of each layer controlled. By using two dif-
ferent wavelengths (often from lasers), this technique can achieve high

Figure 7.14 The reflection from
a single air-glass interface (for
an index of 1.523). Solid line is
the reflection of unpolarized
light. The fine dashed line is the
reflection of p-polarized light,
with the electric field vector par-
allel to the plane of incidence.
The heavier dashed line is for
the s-polarization. (Note that
the “plane of polarization” was
originally defined to be at right
angles to what we now call the
plane of polarization/vibration.)



precision. Another popular monitoring technique utilizes a quartz
crystal of the type used to control radio broadcast frequencies. The
oscillation frequency of such a crystal varies with its mass or thick-
ness. By depositing the coating directly on the crystal and measuring
its oscillation frequency, the coating thickness can be accurately 
monitored.

Let us first consider a single-layer film whose optical thickness (nt)
is exactly one-quarter of a wavelength. For light entering the film at
normal incidence, the wave reflected from the second surface of the
film will be exactly one-half wavelength out of phase with the light
reflected from the first surface when they recombine at the first sur-
face, resulting in destructive interference (assuming that there is no
phase change by reflection). If the amount of light reflected from each
surface is the same, a complete cancellation will occur and no light will
be reflected. Thus, if the materials involved are nonabsorbing, all the
energy incident on the surface will be transmitted. This is the basis of
the “quarter-wave” low-reflection coating which is almost universally
used to increase the transmission of optical systems. Since low-reflec-
tion coatings reduce reflections, they tend to eliminate ghost images as
well as the stray reflected light which reduces contrast in the final
image. Before the invention of low-reflection coatings, optical systems
which consisted of many separate elements were impractical because
of the transmission losses incurred in surface reflections and the fre-
quent ghost images. Even complex lenses were usually limited to only
four air-glass surfaces. A magnesium fluoride coating has an addition-
al benefit in that it is actually (when properly applied) a protective
coating; the chemical stability of many glasses is enhanced by coating.

The reflectivity of a surface coated with one thin film is given by the
equation

R � (7.21)

where

(7.22)

r1 � or (7.23)

r2 � or (7.24)

and 	 is the wavelength of light; t is the thickness of the film; n0, n1,
and n2 are the refractive indices of the media; and I0, I1, and I2 are the
angles of incidence and refraction. Figure 7.15 shows a sketch of the
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film and indicates the physical meanings of the symbols. The sine or
tangent expressions for r1 and r2 are chosen depending on the polar-
ization of the incident light as in Eq. 7.19; for unpolarized light, which
is composed equally of both polarizations, R is computed for each
polarization and the two values are averaged. If we assume nonab-
sorbing materials, the transmission T equals (1 � R). At normal inci-
dence I0 � I1 � I2 � 0, and r1 and r2 reduce to

r1 � (7.25)

r2 � (7.26)

Using Eqs. 7.25 and 7.26 for r1 and r2, Eq. 7.21 can be solved for the
thickness which yields a minimum reflectance. As the preceding dis-
cussion would lead one to expect, this occurs when the optical thick-
ness of the film is one-quarter wavelength, that is,

n1t1 � (7.27)

At normal incidence the reflectivity of a quarter-wave film is thus
equal to

� �
2

(7.28a)

and the film index which will produce a zero reflectance is

n1 � �n0n2� (7.28b)
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Figure 7.15 Passage of light ray
through a thin film, indicating
the terms used in Eq. 7.21.
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Thus, to produce a coating which will completely eliminate reflections at
an air-glass surface, a quarter-wave coating of a material whose index is
the square root of the index of the glass is required. Magnesium fluoride
(MgF2) with an index of 1.38 is used for this purpose; its ability to form
a hard durable film which will withstand weathering and frequently
cleaning is the prime reason for its use, despite the fact that its index is
higher than the optimum value for almost all optical glasses. Equation
7.28b indicates that the magnesium fluoride, with its index of 1.38,
would be an ideal low-reflection coating material for a substrate with an
index of 1.382 � 1.904. Thus it is a much more efficient low-reflection
coating for high-index glass than for ordinary glass of a lower index. The
measured white light reflection of a low-reflection coating on various
index materials is shown in Fig. 7.16.

From Eq. 7.21 it is apparent that the reflectivity of a coated surface
will vary with wavelength. Obviously a quarter-wave coating for one
wavelength will be either more or less than a quarter-wave thick for
other wavelengths, and the interference effects will be modified
accordingly. Thus a low-reflection coating designed for use in the visi-
ble region of the spectrum will have a minimum reflectance for yellow
light, and the reflectance for red and blue light will be appreciably
higher. This is the cause of the characteristic purple color of single-
layer low-reflection coatings. Figure 7.17 indicates this variation.

With more than one layer, more effective antireflection coatings can
be constructed. Theoretically, two layers allow the reduction of the
reflection to zero, provided that materials of suitable index are 
available; frequently, three layers are used for this purpose. Such a
coating achieves a zero reflectivity at a single wavelength at the

Figure 7.16 The measured
reflection of white light from an
uncoated surface and from a
surface coated with a quarter-
wave MgF2 low-reflection coat-
ing, as a function of the index of
the base material.
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expense of a much higher reflectivity on either side. Because of the
shape of the reflectivity curve, this is called a V-coating. It is widely
used for monochromatic systems, such as those utilizing lasers as light
sources.

With three or more layers, a broad-band, higher-efficiency, low-
reflection coating may be achieved as shown in Fig. 7.17. Such a coat-
ing may have two minima as shown, or three, depending on the
complexity of the coating design. A typical reflection over the visual
spectrum is to the order of 0.25 percent, sometimes with another 0.25
percent lost to scattering and absorption.

Thin-film computations

The following equations can be used to calculate the reflection and
transmission of an interference coating of any number of layers. The
equations can be used at oblique angles and will accommodate absorb-
ing materials. They do require a knowledge of complex arithmetic; if
not already familiar with the subject, the interested reader may wish
to consult a basic text on complex arithmetic. These equations are the
basis of most of the computer programs used in the design and evalu-
ation of thin films. The formulas given here are taken from Peter
Berning, in G. Hass (ed.), Physics of Thin Films, vol. 1, Academic,
1963.

The reflection and transmission characteristics of a “stack” of sever-
al thin films can be expressed in explicit equations; however, their
complexity increases rapidly with the number of films, and the follow-
ing recursion expressions are usually preferable. The physical 
thickness of each film is represented by tj and the index by nj � Nj �
iKj (n is the complex index, N is the ordinary index of refraction, and

Figure 7.17 (a) The spectral reflectivity of a single-layer quarter-wave MgF2 coating,
compared with the reflectivity of uncoated glass. The solid curves are for a glass of
index 1.69 and the dashed curves are for an index of 1.52. (b) Multilayer coatings. The
solid line is a broadband multilayer low-reflection coating. The dashed curve is for a
“V-coating,” which can have zero reflectivity at a single wavelength.
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K is the absorption coefficient, which is zero for nonabsorbing materi-
als). The angle of incidence within the jth film is �j; and the “effective”
refractive index is uj � nj cos �j or uj � nj/cos �j (for light polarized with
the electric vector perpendicular to [s], or parallel to [p], the plane of
incidence, respectively). Thus, for oblique incidence the calculations 
are carried out for both polarizations and the results are averaged
(assuming the incident light to be unpolarized and to consist of equal

parts of each polarization).
Since most calculations are carried out at normal incidence (�j � 0)

and for nonabsorbing materials (Kj � 0), one may ordinarily use uj �
nj � Nj.

The subscript notation is j � 0 for the substrate, j � 1 for the first
film, j � 2 for the second, etc., j � p � 1 for the last film and j � p for
the final medium, which is usually air. For each film gj, the effective
optical thickness, in radians, is computed from

gj � (7.29)

where 	 is the wavelength of light for which the calculation is made.
Starting with E1 � E0

� � 1.0 and H1 � u0E0
� � u0, the following

equations are applied iteratively at each surface, with the subscript j
advancing from j � 1 to j � p � 1.

Ej � 1 � Ej cos gj � sin gj (7.30)

Hj � 1 � iujEj sin gj � Hj cos gj (7.31)

where i � ��1� and the other terms have been defined above. Readers
familiar with matrix notation may prefer to manipulate the equivalent
matrix form

� � � � � � � (7.32)

When Eqs. 7.30 and 7.31 (or 7.32) have been applied to the entire
stack, we have the values of Ep and Hp, which will generally be com-
plex numbers of the form z � x � iy. These are substituted into

Ep
� � �Ep � � � x2 � iy2 (7.33)

Ep
� � �Ep � � � x1 � iy1 (7.34)

and the reflectance of the thin-film system is found from
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�
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R � � �
2

(7.35)

where the symbol |z| indicates the modulus of a complex number z, so
that

|z| � |x � iy| � �x2 � y�2�

and

R � |z|2 � x2 � y2 � � �2

�

If the computation has been for normal incidence through nonabsorb-
ing materials, the transmission is given by

T � 1 � R (7.36)

Otherwise, the transmission is given by

T � � �
2

(7.37a)

or

T � � �
2

(7.37b)

where Eq. 7.37a is used for light polarized with the electric vector per-
pendicular to [s] and Eq. 7.3b for the electric vector parallel to [p] the
plane of incidence.

A discussion of the design of multilayer coatings is beyond the scope
of this volume; the interested reader may pursue the subject in the ref-
erences listed at the end of this chapter. By suitable combinations of
thin films of different indices and thicknesses a tremendous number 
of transmission and reflection effects can be created. Among the types
of interference coatings which are readily available are long- or short-
pass transmission filters, bandpass filters, narrow bandpass (spike fil-
ters), achromatic extra-low-reflection coatings as well as the reflection
coatings described in the next section. An extremely valuable property
of thin-film coatings is their spectral versatility. Once a combination of
films has been designed to produce a desired characteristic, the wave-
length region can be shifted at will by simply increasing or decreasing
all the film thicknesses in proportion. For example, a spike filter
designed to transmit a very narrow spectral band at 1 �m can be shift-
ed to 2 �m by doubling the thickness of each film in the coating. This,
of course, is limited by the absorption characteristics of the substrate
and the film materials.

E0
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�
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Figure 7.18 Transmission of typical evaporated interference filters plotted
against wavelength in arbitrary units. (Upper left) Short-pass filter (note
that dashed portion of curve must be blocked by another filter if low long
wavelength transmission is necessary). (Upper right) Long-pass filter.
(Lower left) Bandpass filter. (Lower right) Narrow bandpass (spike) filter.

The characteristics of a number of typical interference coatings are
shown in Fig. 7.18. Note that the wavelength scale is plotted in arbi-
trary units, with a central wavelength of 1, since (within quite broad
limits) the characteristics can be shifted up or down the spectrum as
described in the preceding paragraph. Most interference filters are
very nearly 100 percent efficient, so that the reflection for a film is
equal to one minus the transmission (except in regions where the
materials used become absorbing). Since the characteristics of an
interference filter depend on the thickness of the films, the character-
istics will change when the angle of incidence is changed. This is in
great measure due to the fact that the optical path through a film is
increased when the light passes through obliquely. For moderate
angles the effect is usually to shift the spectral characteristics to a
slightly shorter wavelength. The wavelength shift with obliquity is
approximated by

	
�

� �n2� s�in2��

where 	� is the shifted wavelength at an angle of incidence of �, 	0 is the
wavelength for normal incidence, and n is the “effective index” for the
coating stack (n is typically in the range of 1.5 to 1.9 for most coatings).

	0
�
n
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Coatings also shift wavelength effects with temperature; this shift is to
the order of one- or two-tenths of an angstrom per degree Celsius.

Coatings consisting of a few layers are for the most part reasonably
durable and can withstand careful cleaning. However, coatings con-
sisting of a great number of layers (and coatings consisting of 50 or
more layers are occasionally used) tend toward delicacy, and must be
handled with due respect.

Some multilayer coatings are quite effective polarizers when used
obliquely (and as such, are occasionally responsible for “mysterious”
happenings). This is notably true in systems using linearly polarized
laser beams. One must also exercise care in photometric or radiomet-
ric applications (e.g., spectrophotometers), since polarization effects
can introduce significant errors.

7.10 Reflectors

Although polished bulk metals are occasionally used for mirror surfaces,
most optical reflectors are fabricated by evaporating one or more thin
films on a polished surface, which is usually glass. Obviously the inter-
ference filters described in the preceding section can be used as special-
purpose reflectors in instances where their spectral characteristics are
suitable. However, the workhorse reflector material for the great major-
ity of applications is an aluminum film deposited on a substrate by evap-
oration in vacuum. Aluminum has a broad spectral band of quite high
reflectivity and is reasonably durable when properly applied. Almost all
aluminum mirrors are “overcoated” with a thin protective layer of either
silicon monoxide or magnesium fluoride. This combination produces a
first-surface mirror which is rugged enough to withstand ordinary han-
dling and cleaning without undue scratching or other signs of wear.

The spectral reflectance characteristics of several evaporated metal
films are shown in Fig. 7.19. With the exception of the curve for rhodi-
um, the reflectivities given here can seldom be attained for practical
purposes; the silver coating will tarnish and the aluminum film will
oxidize, so that the reflectances tend to decrease with age, especially
at shorter wavelengths. The high reflectivity of silver is only useful
when the coating can be properly protected.

Figure 7.20 indicates the variety of characteristics which are avail-
able in commercial aluminum mirrors. A run-of-the-mill protected 
aluminum mirror can be expected to have an average visual
reflectance of about 88 percent. Two, four, or more interference films
may be added to improve the reflectance where the additional cost can
be accepted. This enhanced reflectivity within the bandpass of the mir-
ror is obtained at the expense of a lowered reflectivity on either side,
as can be seen from the dashed curve in Fig. 7.20.
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Figure 7.20 Spectral reflectance of aluminum mirrors. The solid curves are for
aluminum films with various types of thin film overcoatings—either for protec-
tion or for increased reflectivity. The dashed line is an extra-high-reflectance mul-
tilayer coating. All coatings shown are commercially available.

Dichroics and semireflecting mirrors constitute another class of
reflector. Both are used to split a beam of light into two parts. A
dichroic reflector splits the light beam spectrally, in that it transmits
certain wavelengths and reflects others. A dichroic reflector is often
used for heat control in projectors and other illuminating devices. A
hot mirror is a dichroic which transmits the visible region of the spec-
trum and reflects the near infrared. A cold mirror does just the
reverse, in that it transmits the infrared and reflects the visible. For
example, a cold mirror introduced into the optical path will allow
undesired heat in the form of infrared radiation to be removed from

Figure 7.19 Spectral reflectance for evaporated metal films on glass. Data repre-
sents new coatings, under ideal conditions.
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the beam by transmitting it to a heat dump. These mirrors have 
the advantage over heat-absorbing filter glass in that they do not 
themselves get hot and thus do not require a fan for cooling. A semire-
flecting mirror is, nominally at least, spectrally neutral; its function is
to divide a beam into two portions, each with similar spectral charac-
teristics. Figure 7.21 shows the characteristics of a variety of these
partial reflectors.

7.11 Reticles

A reticle is a pattern used at or near the focus of an optical system,
such as the cross hairs in a telescope. For a simple cross-hair pattern,
fine wire or spider (web) hair is occasionally used, stretched across an
open frame. However, a pattern which is supported on a glass (or oth-
er material) substrate offers considerably more versatility, and most
reticles, scales, divided circles, and patterns are of this type.

Figure 7.21 Characteristics of partial reflectors. (a) Multilayer “neutral” semi-
reflectors (efficiency better than 99 percent). (b) Dichroic multilayer reflec-
tors—blue, green, red, and yellow reflection. (c) Visual efficiency of aluminum
semireflectors. (d) Visual efficiency of chrome semireflectors.
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The simplest type of reticle is produced by scribing, or scoring, the
glass surface with a diamond tool. A line produced this way, while not
opaque, modifies the glass sufficiently so that under the proper type of
illumination the line will appear dark. Where clear lines in an opaque
background are desired, the glass can be coated with an opaque coat-
ing, such as evaporated aluminum, and the lines scribed through the
coating with a diamond or hardened steel tool, depending on the type
of line desired. Scribing produces very fine lines.

Another old technique is to etch the substrate material. A waxy
resist is coated on the substrate and the desired pattern cut through
the resist. The exposed portion of the substrate is then etched (with
hydrofluoric acid in the case of glass) to produce a groove in the mate-
rial. The groove can be filled with titanium dioxide (white), or lamp
black in a waterglass medium, or evaporated metal. Etched reticles
are durable and have the advantage that they can be edge-lighted if
illumination is necessary. Any substrate that is readily etched can be
used. This process is used for many military reticles and also for accu-
rate metrology scales on steel.

The most versatile processes for production of reticles are based on
the use of a photoresist, or photosensitive material. Photoresists are
exposed like a photographic emulsion, either by contact printing
through a master or by photography. However, when the photoresist is
“developed,” the exposed areas are left covered with the resist and the
unexposed areas are completely clear. Thus, an evaporated coating of
any of a number of metals (aluminum, chrome, inconel, nichrome, cop-
per, germanium, etc.) can be deposited over the resist. In the clear
areas the coating adheres to the substrate; when the resist is removed,
it carries away the coating deposited upon it, leaving a durable pattern
which is an exact duplicate of the master. The precision, versatility,
ruggedness, and suitability for mass production of this technique have
earned it a prominent place in the field of reticle manufacture.

The photoresist technique may also be combined with etching,
where the material to be etched is either a metal substrate or an evap-
orated metal film.

Where the reticle pattern must be nonreflecting, the glue silver
process or the black-print process is used. The technique is similar to
that used in producing the photoresist pattern, except that the photo-
sensitive material is opaque. The clear areas are free of emulsion. Glue
silver reticles are fragile but capable of very high resolution of detail.
The black-print process is more durable. Occasionally an extremely
high resolution photographic emulsion is used for a reticle pattern;
however, the presence of emulsion in the clear areas of the pattern is
ordinarily a drawback.



The following tabulation indicates the resolution and accuracy
possible with these techniques. These figures represent the highest
level of quality that reticle manufacturers are capable of at the pre-
sent time; if cost is a factor, one is well advised to lower one’s
requirements an order of magnitude or so below the levels indicated
here.

Finest line Dimensional Minimum figure
Method width, in repeatability, in height, in

Scribing 0.00001 ±0.00001
Etch (and fill) 0.0002–0.0004 ±0.0001 0.004
Photo-resist
(evaporated metal) 0.001–0.002 ±0.00005 0.002

Glue silver 0.00003–0.0002 ±0.00005–0.0005 0.002
Black print 0.001 ±0.0001 0.005
Emulsion 0.00005–0.0001 ±0.00005 0.001

7.12 Cements and Liquids

Optical cements are used to fasten optical elements together. Two
main purposes are served by cementing: the elements are held in accu-
rate alignment with each other independent of their mechanical
mount, and the reflections from the surfaces (especially those from
TIR; see Sec. 4.6) are largely eliminated by cementing. Ordinarily the
layer of cement used is extremely thin and its effect on the optical
characteristics of the system can be totally neglected; some of the 
newer plastic cements, designed to withstand extremes of tempera-
ture, are used in thicknesses of a few thousandths of an inch (which
could affect the performance of an optical system under critical condi-
tions where the light rays have large slopes).

Canada balsam is made from the sap of the balsam fir. It is available
in a liquid form (dissolved in xylol) and in stick or solid form. Elements
to be cemented are cleaned and placed together on a hot plate. When
the elements are warm enough to melt the balsam, the stick is rubbed
on the lower element. The upper element is replaced and the excess
cement and any entrapped air bubbles are worked out by oscillating or
rocking the upper element. The elements are then placed in an align-
ment fixture to cool. Balsam cement has an index of refraction of about
1.54 and a V-value of about 42. These are conveniently midway
between the refractive characteristics of crown and flint glasses.
Unfortunately, Canada balsam will not withstand high or low temper-
atures. It softens when heated and splits at low temperatures and is
thus unsuited for rigorous thermal environments. Balsam is rarely
used today.
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A great number of plastic cements have been developed to withstand
extremes of both temperature and shock. For the most part, these are
thermosetting (heat-curing) or ultraviolet light-curing plastics,
although a few thermoplastic (heat-softening) materials are used.
Cements are available which will withstand temperatures from 82°C
down to �65°C without failure when properly used. In general the
thermosetting cements are supplied in two containers (sometimes
refrigerated), one of which contains a catalyst which is mixed into the
cement prior to use. A drop of cement is placed between the elements
to be cemented, the excess cement and air bubbles are worked out, and
the elements are placed in a fixture or jig for a heating cycle which
cures the cement. Once the cement has set, it is exceedingly difficult
to separate the components; the customary technique is to shock them
apart by immersion in hot (150 to 200°C) castor oil. The index of
refraction of plastic cements ranges from 1.47 to 1.61, depending on
the type, with most cements falling between 1.53 and 1.58 with a V-
value between 35 and 45. Epoxies and methacrylates are widely used.
Because of the variety of types and characteristics which are available,
one should consult the manufacturer’s literature for specific details
regarding any given cement.

A rarely used method of fastening optical elements together is by
what is called optical contact. Both pieces must be scrupulously cleaned
(often the final cleaning is with a cloth slightly stained with polishing
rouge) and laid together. If the surface shapes match well enough, as the
air is pressed out from between the pieces, a molecular attraction will
cause them to adhere in a surprisingly strong bond, which will with-
stand a force of about 95 lb/in2. Usually the only way properly contact-
ed surfaces can be separated is by heating one of them and allowing
thermal expansion to break the contact (it often breaks the glass as
well). Occasionally, soaking in water will separate the pieces.

Optical liquids are used primarily for microscope immersion fluids
and for use in index measurement (in critical-angle refractometers).
For microscopy, water (nd � 1.33), cedar oil (nd � 1.515), and glycerin
(ultraviolet n � 1.45) are frequently utilized. For refractometers
alpha-bromonaphthalene (n � 1.66) is the most commonly used liquid.
Methylene iodide (n � 1.74) is used for high index measurement (since
the liquid index must be larger than that of the sample to avoid total
internal reflection back into the sample).
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Exercises

1 (a) What is the transmission of a stack of three thin plane parallel plates
of glass (n � 1.5) at normal incidence?



(b) What percentage of the incident light is transmitted directly (i.e., with-
out any intervening reflections)?

ANSWER: (a) 80 percent, (b) (0.96)6 � 78 percent

2 If a 1-cm thickness of a material transmits 85 percent and 2-cm thickness
transmits 80 percent, (a) what percentage will a 3-cm thickness transmit? (b)
What is the absorption coefficient of the material? (Neglect all multiple reflec-
tions.)

ANSWER: (a) 75.3 percent; (b) 0.06062 cm�1

3 Determine the coefficients for the dispersion equations given in Section 7.1
for one of the optical glasses listed in Fig. 7.4. Evaluate the accuracy of the
equations by comparing the index values given by the equations with those
listed in the table (for wavelengths not used in determining the constants).

4 Using the spectral transmission curves of Fig. 7.10, plot the spectral trans-
mission which would result from a combination of filters (c) and (f).

5 Plot, in the manner of Fig. 7.14, the curve of reflection against angle of inci-
dence for a single surface of glass (n � 1.52) coated with a quarter wavelength
thickness of magnesium fluoride (n � 1.38).
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Radiometry
and Photometry

8.1 Introduction

In concept, both radiometry and photometry are quite straightfor-
ward; however, both have been cursed with a jungle of often bewilder-
ing terminology. Radiometry deals with radiant energy (i.e.,
electromagnetic radiation) of any wavelength. Photometry is restrict-
ed to radiation in the visible region of the spectrum. The basic unit of
power (i.e., rate of transfer of energy) in radiometry is the watt; in pho-
tometry, the corresponding unit is the lumen, which is simply radiant
power as modified by the relative spectral sensitivity of the eye (Fig.
5.10) per Eq. 8.18. Note that watts and lumens have the same dimen-
sions, namely energy per time.

All radiometry must take into account the variation of characteris-
tics with wavelength. Examples are the spectral variation of emission,
the variation of transmission of the atmosphere and optics with wave-
length, and the differences in detector and film response with 
wavelength. A convenient way to deal with this is to multiply, wave-
length by wavelength, all such factors together so as to arrive at one
unified spectral weighting function. Thus, all radiometry is spectrally
weighted and it should be apparent that photometry is simply one par-
ticular spectral weighting. See Sec. 8.9.

The principles of radiometry and photometry are readily understood
when one thinks in terms of the basic units involved, rather than the
special terminology which is conventionally used. The next five sec-
tions will discuss radiation in terms of watts; the reader should
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remember that the discussion is equally valid for photometry, if
lumens are read for watts.

8.2 The Inverse Square Law; Intensity

Consider a hypothetical point (or “sufficiently” small) source of radiant
energy, which is radiating uniformly in all directions. If the rate at
which energy is radiated is P watts, then the source has a radiant
intensity J of P/4� watts per steradian,* since the solid angle into
which the energy is radiated is a sphere of 4� steradians. Of course
there are no truly “point” sources and no practical sources which radi-
ate uniformly in all directions, but if a source is quite small relative to
its distance, it can be treated as a point, and its radiation, in the direc-
tions in which it does radiate, can be expressed in watts per steradian.

If we now consider a surface which is S cm from the source, then 1
cm2 of this surface will subtend 1/S2 steradians from the source (at the
point where the normal from the source to the surface intersects the
surface, if S is large). The irradiance H on this surface is the incident
radiant power per unit area and is obtained by multiplying the inten-
sity of the source in watts per steradian by the solid angle subtended
by the unit area. Thus, the irradiance is given by

H � J (8.1)

The units of irradiance are watts per square centimeter (W/cm2).
Equation 8.1 is, of course, the “inverse square” law, which is conven-
tionally stated: the illumination (irradiance) on a surface is inversely
proportional to the square of the distance from the (point) source.

Thus, if our uniformly radiating point source emits energy at a rate
of 10 W, it will have an intensity J � 10/4� � 0.8 W ster�1, and the
radiation falling on a surface 100 cm away would be 0.8 � 10�4 W/cm2,
or 80 �W/cm2. If the surface is flat, the irradiance will, of course, be
less than this at points where the radiation is incident at an angle,
since the solid angle subtended by a unit of area in the surface will be
reduced. From Fig. 8.1 it can be seen that the source-to-surface dis-
tance is increased to S/cos � and that the effective area (normal to the

1
�
S2
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*A steradian is the solid angle subtended (from its center) by 1/4� of the surface area
of a sphere. Thus, a sphere subtends 4� (12.566) steradians from its center; a hemi-
sphere subtends 2� steradians. The size of a solid angle in steradians is found by deter-
mining the area of that portion of the surface of a sphere which is included within the
solid angle and dividing this area by the square of the radius of the sphere. For a small
solid angle, the area of the included flat surface normal to the “central axis” of the angle
can be divided by the square of the distance from the surface to the apex of the angle to
determine its size in steradians. One can visualize a steradian as a cone with an apex
angle of about 65.5°, or 3283 square degrees.



direction of the radiation) is reduced by a cos � factor. Thus, the solid
angle subtended, and the irradiance, are reduced by a cos3 � factor.

8.3 Radiance and Lambert’s Law

An extended source, that is, one whose dimensions are significant,
must be treated differently than a point source. A small area of the
source will radiate a certain amount of power per unit of solid angle.
Thus, the radiation characteristics of an extended source are
expressed in terms of power per unit solid angle per unit area. This is
called radiance; the usual units for radiance are watts per steradian
per square centimeter (W ster�1 cm�2) and the symbol is N. Note that
the area is measured normal to the direction of radiation, not in the
radiating surface.

Most extended sources of radiation follow, at least approximately,
what is known as Lambert’s law of intensity,

J� � J0 cos� (8.2)

where J� is the intensity of a small incremental area of the source in a
direction at an angle � from the normal to the surface, and J0 is the
intensity of the incremental area in the direction of the normal. For
example, a heated metal disk with a total area of 1 cm2 and a radiance
of 1 W ster�1 cm�2 will radiate 1 W/ster in a direction normal to its sur-
face. In a direction 45° to the normal, it will radiate only 0.707 W/ster
(cos 45° � 0.707).

Notice that although radiance is given in terms of watts per stera-
dian per square centimeter, this should not be taken to mean that the
radiation is uniform over a full steradian or over a full square cen-
timeter. Consider a source consisting of a 0.1-cm square incandescent
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Figure 8.1 Geometry of a point
source irradiating a plane,
showing that irradiance (or illu-
mination) varies with cos3 �.



filament in a 20-cm-diameter envelope. Assume that the bulb is paint-
ed so that only a 1-cm square transmits energy, and that the source
radiates one-fiftieth of a watt through this square. (We assume, for
convenience, that the radiation intercepted by the painted envelope is
thereby totally removed from consideration.) Now the filament has an
area of 0.01 cm2 and is radiating 0.02 W into a solid angle of (approx-
imately) 0.01 steradian. Therefore, it has a radiance of 200 W ster�1

cm�2, but only within the solid angle subtended by the window!
Outside this angle the radiance is zero. This concept of radiance over
a limited angle becomes important in dealing with the radiance of
images and must be thoroughly understood.

There are several interesting consequences of Lambert’s law that
are worthy of consideration, not only for their own sake but because
they illustrate the basic techniques of radiometric calculations. The
radiance of a surface is conventionally taken with respect to the area of
a surface normal to the direction of radiation. It can be seen that,
although the emitted radiation per steradian falls off with cos �
according to Lambert’s law, the “projected” surface area falls off at
exactly the same rate. The result is that the radiance of a Lambertian
surface is constant with respect to �. In visual work the quantity corre-
sponding to radiance is brightness, and the above is readily demon-
strated by observing that the brightness of a diffuse source is the same
regardless of the angle from which it is viewed.

8.4 Radiation into a Hemisphere

Let us determine the total power radiated from a flat diffuse source
into a hemisphere. If the source has a radiance of N W ster�1 cm�2, one
might expect that the power radiated into a hemisphere of 2� steradi-
ans would be 2�N W/cm2. That this is twice too large is readily shown.
With reference to Fig. 8.2, let A represent the area of a small source
with a radiance of N W ster�1 cm�2 and an intensity of J� � J0 cos � �
NA cos � W/ster. The incremental ring area on a hemisphere of radius
R has an area of 2�R sin � � R d� and thus subtends (from A) a solid
angle of 2�R2 sin � d�/R2 � 2� sin � d� steradians. The radiation inter-
cepted by this ring is the product of the intensity of the source and the
solid angle, or

dP � J� 2� sin � d� � 2�NA sin � cos � d� (8.3)

Integrating to find the total power radiated into the hemisphere from
A, we get

P � ��/2

0
2�NA sin � cos � d� � 2�NA � ��/2

0
� �NA watts (8.4)

sin2 �
�

2
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Dividing by A to get watts emitted per square centimeter of source,
we find the radiation into the 2� steradian of the hemisphere to be
�N W/cm2, not 2�N. This is the basic relationship between radiance
and the power emitted from the surface.

8.5 Irradiance Produced by a Diffuse
Source

It is frequently of interest to determine the irradiance produced at a
point by a lambertian source of finite size. Referring to Fig. 8.3,
assume that the source is a circular disk of radius R and that we wish
to determine the irradiance at some point X which is a distance S from
the source and is on the normal through the center of the source. (Note
that we will determine the irradiance on a plane parallel to the plane
of the source.) The radiant intensity of a small element of area dA in
the direction of point X is given by Eq. 8.2 as

J� � J0 cos � � N dA cos �

where N is the radiance of the source. Since the distance from dA to X
is S/cos �, and the radiation arrives at an angle �, the incremental irra-
diance at X produced by dA is

dH � J0 cos � � � � (8.5)

The same irradiance is produced by each incremental area making up
a ring of radius r and a width dr, so that we can substitute the area of
the ring, 2�r dr, for dA in Eq. 8.5 to get the incremental irradiance
from the ring.

dH � (8.6)
2�r dr N cos4 �
��

S2

N dA cos4 �
��

S2

cos3 �
�

S2
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Figure 8.2 Geometry of a lambertian
source radiating into a hemisphere.



To simplify the integration, we substitute

r � S tan �

dr � S sec2 � d�

into Eq. 8.6 to get

dH �

� 2�N tan � cos2 � d� � 2�N sin � cos � d�

Integrating to determine the irradiance from the entire source, we get

H � � �

0
2�N sin � cos � d� � 2�N � � �

0

H � �N sin2 �m
2 watt/cm2 (8.7)

where H is the irradiance produced at a point by a circular source of
radiance N W ster�1 cm�2 which subtends an angle of 2�m from the
point (when the point is on the “axis” of the source). Note well that �m

is the angle defined by the source diameter.
Unfortunately noncircular sources do not readily yield to analysis.

However, small noncircular sources may be approximated with a fair
degree of accuracy by noting that the solid angle subtended by the
source from X is

� � 2� (1 � cos �) � 2�

and for small values of �, cos � approaches unity and

� � � sin2 �

sin2 �
��
(1 � cos �)

sin2 �
�

2

2�S tan �S sec2 � d�N cos4 �
����

S2
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Figure 8.3 Geometry of a circu-
lar source irradiating point X.



Thus, if the angle subtended by the source is moderate, we can substi-
tute into Eq. 8.7 and write

H � N� (8.8)

If the point X does not lie on the “axis” (the normal through the cen-
ter of the circular source), then the irradiance would be subject to the
same factors outlined in the discussion of the “cosine-fourth” rule in
Sec. 6.7. Thus, if the line from the point X� to the center of the circle
makes an angle � to the normal, the irradiance at X� is given by

H� � H0 cos4 � (8.9)

where H0 is the irradiance along the normal given by Eq. 8.7 or 8.8 and
H� is the irradiance at X� (measured in a plane parallel to the source).
(See the note in Example A regarding the inaccuracy of the cosine-
fourth rule when the angles � and � are large.)

It is apparent that Eqs. 8.8 and 8.9 may be used in combination to
calculate the irradiance produced by any conceivable source config-
uration, to whatever degree of accuracy that time (or patience)
allows.

8.6 The Radiometry of Images; 
The Conservation of Radiance

When a source is imaged by an optical system, the image has a radi-
ance, and it may be treated as a secondary source of radiation.
However, one must always keep in mind that the radiance of an image
differs from the radiance of an ordinary source in that the radiance of
an image exists only within the solid angle subtended from the image
by the clear aperture of the optical system. Outside of this angle, the
radiance of the image is zero.

Figure 8.4 illustrates an aplanatic optical system imaging an incre-
mental area A of a lambertian source at A′. We will consider the radi-
ance of the image at A′ formed through a generalized incremental area
P in the principal surface of the optical system. (Since the system is
aplanatic, that is, free of coma and spherical aberration, the principal
“planes” are spherical surfaces and are centered on the object and
image.) The radiance of the source is N W ster�1 cm�2 and the projected
area of A in the direction � is A cos � cm2. The solid angle subtended by
incremental area P from A is P/S2, where S is the distance from the
object to the first principal surface. Therefore, the radiant power inter-
cepted by area P is

Power � N A cos � watts
P
�
S2
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This radiation is imaged by the optical system at area A′, into a (pro-
jected) area A′ cos �′, through a solid angle P′/S ′2. Thus, the radiance
at A′ is given by

N′ � TN A cos � � � watt ster�1 cm�2

where T is the transmission of the optical system. Now we note that
the incremental areas A and A′ are related by the laws of first-order
optics, and, if both are in media of the same index, AS ′2 � A′S2.
Further, the principal surfaces are unit images of each other; taking
the tilts of the surfaces into account, we get P cos � � P′ cos �′. Making
these substitutions and clearing, we find that the radiance of the image
is equal to that of the object times the transmission of the system, or

N′ � TN (8.10)

This fundamental relationship can be restated with slightly different
emphasis: the radiance of an image cannot exceed that of the object.*

S′2
��
P ′A′ cos � ′

P
�
S2
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*This statement and Eqs. 8.10 and 8.11 are subject to the condition that both object
and image lie in media of the same index of refraction. When the media have different
indices, the image radiance and irradiance are multiplied by the factor (ni/n0)2, where
ni and n0 are the refractive indices of the image media and object media, respectively.
Thus, Eqs. 8.10 and 8.11 become

N′ � TN � �2
(8.10a)

H � TN � �2
� sin2 �′

� TN � �2
� (8.11a)

The factor (ni/n0) is introduced by the use of An0
2S′2 � A′ni

2S2 in place of AS′2 � A′S2

in the derivation of Eq. 8.10; both equalities are derived from the optical invariant rela-
tionship hnu � h′n′u′ (Eq. 2.55).

ni
�
n0

ni
�
n0

ni
�
n0

Figure 8.4 Illustrates an aplanatic optical system imaging an
incremental source area A at A′.



At first consideration the conservation of radiance (or brightness)
seems quite counterintuitive. Ordinarily, the solid angle of radiation
accepted by an optical system from a source is quite small, as is the
fraction of the total power which passes through the lens and forms
the image. It is difficult to accept that the image formed by this small
fraction of the source power will have the same radiance as does the
source. We can easily demonstrate this, using only the first-order
optics from Chap. 2.

Let us assume a small source of radiance N with an area A. The
source thus has an intensity of AN. The source is imaged by an optical
system with an area P which is located a distance S from the source. The
solid angle subtended by the lens from the source is thus P/S2, and the
power intercepted by the lens and formed into the image is ANP/S2.

The lens will form an image with a magnification M, and the area of
the image will thus be AM2. The image distance will be MS, and the
solid angle subtended by the lens from the image will be P/M2S2 ster.
Thus the power in the image (ANP/S2) is spread over the image area
(AM2) and exists only over the solid angle (P/M2S2). The image radi-
ance is power per unit area per solid angle; combining the expressions
above, we get (neglecting any transmission losses)

Image radiance � power/area � solid angle

� (ANP/S2) / (AM2) (P/M2S2)

We can cancel A, P, S, and M, leaving us with

Image radiance � N (the object radiance)

which is a statement of the conservation of radiance (or brightness).
By the application of exactly the same integration technique used in

Sec. 8.5, it can be shown that the irradiance produced in the plane of
an image is given by

H � T�N sin2 �′ watt/cm�2 � TN� (for small angles) (8.11)

where T is the system transmission, N (W ster�1 cm�2) is the object
radiance, and �′ is the half angle subtended by the exit pupil of the
optical system from the image. Small or noncircular exit pupils and
cylindrical lens systems can be handled by substituting the solid angle
� for � sin2 �′ (just as in Eq. 8.8); image points off the optical axis are
subject to the cosine-fourth law in addition to any losses due to
vignetting (Eq. 8.9 and Sec. 6.7).

The similarity between the equations for the irradiance produced by
a diffuse source and by an optical system makes it apparent that,
when it is viewed from the image point, the aperture of the optical 
system takes on the radiance of the object it is imaging. This is an
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extremely useful concept; for radiometric purposes, a complex optical
system can often be treated as if it consisted solely of a transmission
loss and an exit pupil with the same radiance as the object. Similarly,
when an optical system produces an image of a source, the image can
be treated as a new source of the same radiance (less transmission
losses). Of course, the direction that radiation is emitted from the
image is limited by the aperture of the system.

When an object is so small that its image is a diffraction pattern (Airy
disk), then the preceding techniques, which apply to extended sources,
cannot be used. Instead, the power intercepted by the optical system,
reduced by transmission losses, is spread into the diffraction pattern. To
determine the irradiance (or the radiance) of the image, we note that 84
percent of the power intercepted and transmitted by the lens is concen-
trated into the central bright spot (the Airy disk). A precise determina-
tion of irradiance requires that one integrate the relative
irradiance-times-area product over the central disk and equate this to 84
percent of the image power. If P is the total power in the Airy pattern, H0

the irradiance at the center of the pattern, and z the radius of the first
dark ring, a numerical integration of Eq. 6.18 over the central disk yields

0.84P � 0.72H0z2

Rearranging and substituting the value of z given by Eq. 6.20, we get

H0 � 1.17 � �P � �2

where 	 is the wavelength and NA is n′ sin U′, the numerical aperture.
The irradiance for points not at the center of the pattern is then found
by Eq. 6.18. Note that the preceding assumes a circular aperture; for
rectangular apertures, the process would be based on Eq. 6.16.

Example A

In Fig. 8.5, A is a circular source with a radiance of 10 W per ster per cm2

radiating toward plane BC. The diameter of A subtends 60° from point
B. The distance AB is 100 cm and the distance BC is 100 cm. An optical
system at D forms an image of the region about point C at E. Plane BC
is a diffuse (lambertian) reflector with a reflectivity of 70 percent. The
optical system (D) has a 1-in-square aperture and the distance from D to
E is 100 in. The transmission of the optical system is 80 percent. We wish
to determine the power incident on a 1-cm square photodetector at E.

We begin by determining the irradiance at B, using Eq. 8.7; the
source radiance is 10 W ster�1 cm�2 and the half angle � is 30°, giving

HB � �N sin 2 � � � � 10 � � �2

� 7.85 W/cm2
1
�
2

NA
�

	

P
�
z2
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Since angle BAC is 45°, we can find the irradiance at C from Eq. 8.9,
noting that cos 45° is 0.707

HC � HB cos4 45° � 7.85 � (0.707)4 � 1.96 W/cm2

(Note that the cosine-fourth effect derived in Sec. 6.7 included one
cosine term which was approximate; its accuracy depended on the dis-
tance from the pupil to the image surface being much larger than the
pupil diameter. In Example A this approximation is quite poor. P.
Foote, in the Bulletin of the Bureau of Standards 12, 583 (1915), gave
the following expression for the irradiance, which is accurate even
when the source is large compared with the distance.

H � �1 � �
If we compare the irradiance from this equation with that from Eqs.
8.7 and 8.8 for the angles � and � from Example A, we find that this
irradiance is 42 percent greater than the cosine-fourth result. This is,
of course, a rather extreme case.)

It is now necessary to determine the radiance of the surface at C.
The diffuse surface at C reradiates 70 percent of the incident 1.96
W/cm2 into a full hemisphere; the total power reradiated is thus
1.37 W/cm2. In Sec. 8.4 it was shown that a source of radiance N
radiated �N W/cm2 into a hemisphere. Thus the radiance at point C
is given by

(1 � tan2 � � tan2 �)
������

[tan4 � � 2 tan2 �(1 � tan2 �) � 1/cos4�]1/2

�N
�

2
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NC � � � � 0.44 W ster�1 cm�2

The irradiance at E can now be determined from Eq. 8.11, noting that
the solid angle subtended by the aperture of the lens system is
1/(100)2, or 10�4 ster, and substituting this for � sin2 � in Eq. 8.11,

HE � TD�NC sin2 � � TD NC�

� 0.8 � 0.44 � 10�4 � 0.35 � 10�4 W/cm2

Since the photodetector at E has an area of 1 cm2, the radiant power
falling on it is just 0.35 � 10�4 W, or 35 �W.

8.7 Spectral Radiometry

In the preceding discussion, no mention has been made of the spectral
characteristics of the radiation. It is apparent that every radiant
source has some sort of spectral distribution of its radiation, in that it
will emit more radiation at certain wavelengths than others.

For many purposes, it is necessary to treat intensity (J), irradiance
(H), radiance (N), etc. (in fact, all the quantities listed in Fig. 8.6) as
functions of wavelength. To do this we refer to the above quantities per
unit interval of wavelength. Thus, if a source emits 5 W of radiant
power in the spectral band between 2 and 2.1 �m, it emits 50 W per
micrometer (W/�m) in this region of the spectrum. The standard sym-
bol for this type of quantity is the symbol given in Fig. 8.6 subscripted
with a 	, and the name is preceded by “spectral.” For example, the
symbol for spectral radiance is N	 and its units are watts per steradi-
an per square centimeter per micrometer (W ster�1 cm�2 �m�1).

1.37
�

�

0.7 � 1.96
��

�

RH
�

�
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Figure 8.6 Radiometric terminology. The names, symbols, descriptions, and preferred
units for quantities in radiometric work.



In many applications it is absolutely necessary to take the spectral
characteristics of sources, detectors, optical systems, filters, and the like
into account. This is accomplished by integrating the particular radia-
tion product function over an appropriate wavelength interval. Since
most spectral characteristics are not ordinary functions, the process of
integration is usually numerical, and thus laborious. As a brief example,
suppose that the irradiance in an image is desired. The spectral radi-
ance of the object can be described by some function N(	) and the
transmission of the atmosphere, the optical system, and any filters can
be combined in a spectral transmission function T(	). Equation 8.11 will
give the irradiance of the image (for any given wavelength); for use over
an extended wavelength interval, we must write

H � �	2

	1

T(	) �N(	) sin2 � d	 � � sin2 � �	2

	1

T(	) N (	) d	 W/cm2 (8.12)

where 	1 and 	2, the limits of the integration, may be zero and infini-
ty, but are usually taken as real wavelengths which encompass the
region of interest. In practice, it is usually necessary to perform the
integration numerically; this process is represented (for this particu-
lar example) by the summation:

H � � sin2 �
	2

	 � 	1

T(	) N(	) 
	 W/cm2 (8.13)

The spectral response of a detector is included in a calculation in the
same manner. For example, the effective power falling on a detector
with an area of A and a relative spectral response R(	), when the
detector is located in the image plane of the system above, would be
(provided that the image completely covered the detector)

P � A� sin2 � �	2

	1

R(	) T(	) N(	) d	 W

8.8 Blackbody Radiation

A perfect blackbody is one which totally absorbs all radiation incident
upon it. The radiation characteristics of a heated blackbody are subject
to known laws, and since it is possible to build a close approximation to
an ideal blackbody, a device of this type is a very useful standard source
for the calibration and testing of radiometric instruments. Further, most
sources of thermal radiation, i.e., sources which radiate because they are
heated, radiate energy in a manner which can be readily described in
terms of a blackbody emitting through a filter, making it possible to
use the blackbody radiation laws as a starting point for many radio-
metric calculations.
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Planck’s law describes the spectral radiant emittance of a perfect
blackbody as a function of its temperature and the wavelength of the
emitted radiation.

W	 � (8.14)

where W	 � the radiation emitted into a hemisphere by the black-
body in power per unit area per wavelength interval
(W cm�2 �m�1)

	 � the wavelength (�m)
e � the base of natural logarithms (2.718…)

T � the temperature of the blackbody in Kelvin (K � °C � 273)
C1 � a constant � 3.742 � 104 when area is in square centime-

ters and wavelength in micrometers
C2 � a constant � 1.4388 � 104 when square centimeters and

micrometers are used

Figure 8.7 indicates the shape of the curve of W	 plotted against wave-
length. Note that the spectral radiance (N	) is given by W	/�.

If we integrate Eq. 8.14, we can obtain the total radiation at all
wavelengths. The resulting equation is known as the Stefan-
Boltzmann law,

WTOT � 5.67 � 10�12T 4 W/cm2 (8.15)

and indicates that the total power radiated from a blackbody varies as
the fourth power of the absolute temperature.

If we differentiate Planck’s equation (8.14) and set the result
equal to zero, we can determine the wavelength at which the spec-
tral emittance (W	) is a maximum and also the amount of W	 at this
wavelength. Wien’s displacement law gives the wavelength for max-
imum W	 as

	max � 2897.8T�1 �m (8.16)

and W	 at 	max as

W
	, max � 1.286 � 10�15T 5 W/cm2 � �m�1 (8.17)

Notice that the higher the temperature, the shorter the wavelength at
which the peak occurs and that W	 at the peak varies as the fifth power
of the absolute temperature.

Before the advent of the electronic calculator, Planck’s equation was
very awkward to use and for this reason a number of tables, charts,

C1
��
	5 (eC2/	T � 1)
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and slide rules are available which allow the user to simply look up the
values of W	 for the appropriate temperature and wavelength. Figure
8.7 may be used for this purpose when the precision required is rela-
tively modest.

The use of Fig. 8.7 is quite simple: First the total energy (WTOT), the
peak wavelength (	max), and the maximum spectral radiant emittance
(W	, max) are calculated for the desired temperature by Eqs. 8.15, 8.16,
and 8.17, respectively. The graph in Fig. 8.7 is of W	/W	, max plotted
against relative wavelength. Thus, if W	 for a particular wavelength
(	) is desired, the value of W	/W	, max corresponding to the appropriate
value of 	/	max is selected and multiplied by the value of W	, max from
Eq. 8.17.

Across the top of Fig. 8.7 is a scale which indicates the fraction of the
total energy emitted at all wavelengths below that corresponding to
the point on the scale. Note that exactly 25 percent of the energy from
a blackbody is emitted at wavelengths shorter than 	max. If it is neces-
sary to determine the amount of power emitted in a spectral band
between two wavelengths (	1 and 	2), the wavelengths are converted to
relative wavelengths (	1/	max and 	2/	max) and the fractions correspond-
ing to them are selected from the scale at the top of the figure. The
total power (WTOT) from Eq. 8.15 times the difference between the two
fractions will give the amount of power emitted in the wavelength
interval.

Example B

For a blackbody at a temperature of 27°C (80.6°F), T is 273 � 27 � 300
K, and the total emitted radiation is given by Eq. 8.15

WTOT � 5.67 � 10�12(300)4 � 4.59 � 10�2 W/cm2

The wavelength at which W	 is a maximum is given by Eq. 8.16

	max � 2897.9 (300)�1 � 9.66 �m

and the radiant emittance at this wavelength is obtained from Eq. 8.17

W	, max � 1.288 � 10�15 (300)5 � 3.13 � 10�3 W cm� 2 �m�1

As an aside, note that this (300 K) is a reasonable value for the
ambient temperature and that our result indicates that the earth and
most things on it are strongly emitting at a wavelength of 10 �m. This
is the basis of the “see in the dark” FLIR systems which are sensitive
to this spectral region; most such systems use germanium optics,
which transmit well in the 8- to 14-�m region (which also happens to
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be a good transmission window of the atmosphere). Thus there is no
such thing as darkness if you can detect 10-�m radiation.

Suppose we wish to know the characteristics of this blackbody in the
wavelength region between 4 and 5 �m. We express these wavelengths
in terms of 	max as 4/9.66 � 0.414 and 5/9.66 � 0.518. From Fig. 8.7,
the corresponding values of W	/W	, max are 0.07 and 0.25; these values,
multiplied by W	, max � 3.13 � 10�3 W cm�2 �m�1 give us the spectral
radiant emittances for these wavelengths

At 4 �m:
W

	
� 0.22 � 10�3 W cm�2 �m�1

At 5 �m:
W

	
� 0.78 � 10�3 W cm�2 �m�1

Using the fraction scale across the top of the chart, we find that
about 0.011 of the radiation is emitted below 5 �m (rel. 	 � 0.518) and
about 0.0015 below 4 �m. Thus, approximately 1 percent of the total
radiation (WTOT), amounting to about 4 � 10�4 W/cm2, is emitted in this
spectral band. The radiance of the surface will be 4 � 10�4/� W ster�1

cm�2 in this spectral band. If the blackbody is a foot square, with an
area of about 1000 cm2, it will radiate about 0.4 W between 4 and 5 �m
into a hemisphere of 2� ster.

Most thermal radiators are not perfect blackbodies. Many are what
are called gray-bodies. A gray-body is one which emits radiation in
exactly the same spectral distribution as a blackbody at the same tem-
perature, but with reduced intensity. The total emissivity (�) of a body
is the ratio of its total radiant emittance to that of a perfect blackbody
at the same temperature. Emissivity is thus a measure of the radia-
tion and absorption efficiency of a body. For a perfect blackbody 
� � 1.0, and most laboratory standard blackbodies are within a percent
or two of this value. The table of Fig. 8.8 lists the total emissivity of a
number of common materials. Note that emissivity varies with both
wavelength and with temperature.

Radiation incident on a substance can be transmitted, reflected (or
scattered), or absorbed. The transmitted, reflected, and absorbed frac-
tions obviously must add up to 1.0. The absorbed fraction is the emis-
sivity. Thus a material with either a high transmission or a high
reflection must have a low emissivity.

When dealing with gray-bodies, it is necessary to insert the emis-
sivity factor � into the blackbody equations. Planck’s law (Eq. 8.14),
the Stefan-Boltzmann law (Eq. 8.15), and the Wien displacement
law (Eq. 8.17) should be modified by multiplying the right-hand
term by the appropriate value of �. For many materials the emissiv-

Radiometry and Photometry 235



ity is a function of wavelength. This is apparent from the fact that
many substances (glass, for example) have a negligible absorption,
and consequent low emissivity, at certain wavelengths, while they
are almost totally absorbent at other wavelengths. In regions of the
spectrum where this occurs, emissivity becomes spectral emissivity
(�	) and is treated just as any other spectral function. For many
materials, emissivity will decrease as wavelength increases. It
should also be noted that most materials show a variation of emis-
sivity with temperature as well as wavelength, and precise work
must take this into account. Emissivity usually increases with tem-
perature.

Note that not all sources are continuous emitters. Gas discharge
lamps at low pressure emit discrete spectral lines; the plot of spectral
radiant emittance for such a source is a series of sharp spikes,
although there is usually a low-level background continuum. In high-
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pressure arcs, the spectral lines broaden and merge into a continuous
background with less pronounced spikes.

Color temperature

Before leaving the subject of blackbody radiation, the concept of color
temperature should be mentioned. The color temperature of a source
of light is a colorimetric concept related to the apparent visual color of
a source, not its temperature. For a blackbody, the color temperature
is equal to the actual temperature in Kelvin. For other sources, the col-
or temperature is the temperature of the blackbody which has the
same apparent color as the source. Thus, exceedingly bright or dim
sources may have the same color temperature, but radically different
radiances or intensities. Color temperature usually runs about 150 K
higher than filament temperature. Color temperature is extremely
important in colorimetry and in color photography where fidelity of
color rendition is important, but is little used in radiometry.

8.9 Photometry

Photometry deals with luminous radiation, that is, radiation which the
human eye can detect. The basic photometric unit of radiant power 
is the lumen, which is defined as a luminous flux emitted into a solid
angle of one steradian by a point source whose intensity is 1⁄60 of that of
1 cm2 of a blackbody at the solidification temperature of platinum
(2042 K). From the preceding section, we know that a blackbody radi-
ates energy throughout the entire electromagnetic spectrum. Chapter 5
indicated that the eye was sensitive to only a small interval of this spec-
trum and that its response to different wavelengths within this inter-
val varied widely. Thus, if a source of radiation has a spectral power
function P(	) (W �m�1), the visual effect of this radiation is obtained
by multiplying it by V(	),* the visual response function which is tab-
ulated in Fig. 5.9. The effective visual power of a source is, therefore,
the integral (or summation) of P(	) V(	) d	 over the appropriate wave-
length interval. From the definition of the lumen, it can be deter-
mined that one watt of radiant energy at the wavelength of maximum
visual sensitivity (0.555 �m) is equal to 680 lumens. Therefore, the
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*Note that V(	) is customarily the photopic (normal level of illumination and bright-
ness) visual response curve. Under conditions of complete dark adaptation, the visual
response for scotopic vision would be used. The conversion constant in Eq. 8.18 becomes
1746 instead of 680.



Source Brightness, candles cm-2

Sun (zenith) through atmosphere

Sun (zenith) above atmosphere

Sun (horizon)

Blue sky

Dark cloudy sky

Night sky

Moon

Exteriors—daylight (typical)

Exteriors—night (typical)

Interiors—daylight (typical)

Mercury arc—laboratory

Mercury arc—high pressure

Xenon arc

Carbon arc

Tungsten—3655 K (melting point)

3500 K

3000 K

Tungsten filament – ordinary lamp

– projection lamp

Blackbody—2040 K

—4000 K

—6500 K

Fluorescent lamp

Sodium lamp

Flame—candle, kerosene

Least perceptible brightness

Least perceptible point source

Star Sirius

Atom bomb

Lightning

Ruby laser

Metal halide lamp

1.6 x 105 cd/cm2

2.75 x 105

6 x 102

0.8

4 x 10–3

5 x 10–9

0.25

1

10–6

10–2

10

5 x 105

1.5 x 104 to 1.5 x 105

104 to 105

5.7 x 103

4.2 x 103

1.3 x 103

5 x 102

3 x 103

60.0 (by definition)

2.5 x 104

3 x 105

0.6

6

1

5 x 10–11

2 x 10–8 cd @ 3 m distance

1.5 x 106

108

8 x 106

1014

4 x 104
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Figure 8.9 Typical values for the brightness (luminance) of a number of sources.



luminous flux emitted by a source with a spectral power of P(	) W �m�1

is given by

F � 680 �V (	) P (	) d	 lumens (8.18)

The unit of luminous intensity is called the candle (or “candela”) and
is so named because the original standard of intensity was an actual
candle. A point source of one candlepower is one which emits one
lumen into a solid angle of one steradian. A source of one candle inten-
sity which radiates uniformly in all directions emits 4� lumens. From
the definition of the lumen, it is apparent that a 1-cm2 blackbody at
2042 K has an intensity of 60 candles.

Illumination, or illuminance, is the luminous flux per unit area inci-
dent on a surface. The most widely used unit of illumination is the
foot-candle. One footcandle is one lumen incident per square foot. The
misleading name footcandle resulted from the fact that it is the illu-
mination produced on a surface one foot away from a source of one-
candle intensity. The photometric term illuminance corresponds to
irradiance in radiometry.

The term brightness, or luminance, corresponds to the term radi-
ance. Brightness is the luminous flux emitted from a surface per unit
solid angle per unit of area (projected on a plane normal to the line of
sight). There are several commonly used units of brightness. The can-
dle per square centimeter is equal to one lumen emitted per steradian
per square centimeter. The lambert is equal to 1/� candles per square
centimeter. The foot-lambert is equal to 1/� candles per square foot.
The foot-lambert is a convenient unit for illuminating engineering
work, since it is the brightness which results from one footcandle of
illumination falling on a “perfect” diffusing surface. (Since one lumen
is incident on the 1-ft2 area under an illumination of one footcandle,
the total flux radiated into a hemisphere of 2� ster. from a perfectly
diffuse (lambertian) surface is just one lumen. As pointed out in Sec.
8.4 and Example A, the resulting brightness is 1/� lumen ster�1 ft�2,
not 1/2� lumen ster�1 ft�2). The brightness of a number of sources is
tabulated in Fig. 8.9 and natural illumination and reflectance levels
are tabulated in Fig. 8.10.

The terminology of photometry has grown through engineering
usage, and is thus far from orderly. Special terms have derived from
special usages, and many such terms have survived. A tabulation of
photometric units is given in Fig. 8.11.

Photometric calculations may be carried out exactly as radiometric
calculations, using the relationships presented in Secs. 8.2 through 8.6.
If lumens are substituted for watts in all the expressions, the compu-
tations are straightforward. When the starting and final data must be
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expressed in the special terminology of photometry (as opposed to what
one might term the rational units of lumens, steradians, and square
centimeters), then conversion factors may be necessary for each rela-
tionship. A very simple way of avoiding this difficulty is to convert the
starting data to lumens, steradians, and square centimeters, complete
the calculation, and then convert the results into the desired units.

For convenience, the basic relationships are repeated here in both
radiometric (left column) and photometric (right column) form:
Radiant Intensity: J � P/� Luminous Intensity: I � F/�

J is radiant intensity I is luminous intensity

P is the radiant power emitted F is the luminous flux emitted into
into solid angle � solid angle I�

Irradiance: H � J/S2 � J� Illumination (illuminance):
E � I/S2 � I�

H is the irradiance incident on  a E is the illumination incident on a
surface a distance S from a point surface a distance S from a point
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Source Illumination, footcandles

Direct sunlight

Open shade

Overcast/dark day

Twilight

Full moon

Starlight

Dark night

10,000 footcandles

1,000

10 to 100

0.1 to 1.0

0.01
0.0001
0.00001

Material Reflectance

Asphalt

Trees, grass

Red brick

Concrete

Snow

Aluminum building

Glass window wall

Parking lot with cars

0.05
0.20
0.35
0.40
0.85
0.65
0.70
0.40

(a)

(b)

Figure 8.10 (a) Illumination levels produced by sources in
nature. (b) Reflectance of a number of exteriors.



source of intensity J. � is the solid source of intensity I. � is the solid
angle subtended by a unit area angle subtended by a unit area
of the surface from the source. of the surface from the source.

H � �N sin2 � E � �B sin2 �

H is the irradiance produced by a E is the illumination produced by
diffuse circular source of radiance a diffuse circular source of brightness
N at a point from which the (luminance) B at a point from which 
source diameter subtends 2�. the source diameter subtends 2�.

H � N� E � B�

H is the irradiance produced by a E is the illumination produced by
diffuse source of radiance N at a a diffuse source of brightness B
point from which the area of the at a point from which the area of the
source subtends the solid angle �. source subtends the solid angle �.

H � T�N sin2 � E � T�B sin2 � � T�B/4(f/#)2 (m � 1)2

(H � TN�) (E � TB�) �m � � � 1� �
H is the irradiance at an image E is the illumination at an image
formed by an optical system of formed by an optical system of trans-

s′
�
f
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transmission T whose exit pupil mission T whose exit pupil diameter
diameter (area) subtends an (area) subtends an angle 2� (solid
angle 2� (solid angle �) from ngle �) from the image point when
the image point when object the object brightness is B.
radiance is N.

Radiance: N � P/(�A) Brightness (luminance):
B � F/(�A)

N is the radiance of a diffuse source B is the brightness of a diffuse 
of area A which emits radiant power source of area A which emits 
P into a hemisphere of 2� steradians. luminous flux F into a hemisphere 

of 2� steradians.

Example C

It may be instructive to repeat Example A in photometric terms and to
indicate at each step in the calculation the conversions to the various
photometric units. We will use Fig. 8.5 again; the only change in the
starting data will be that the source A will be assumed to have a
brightness of 10 lumens ster�1 cm�2.

From Fig. 8.11, we note that the source brightness may also be
expressed as 10 candles cm�2, as 10 stilb, as 10� lamberts, or as 9290�
foot-lamberts.

The illumination produced at point B is calculated from Eq. 8.7
(after rewriting it in photometric symbols)

H � �N sin2 �

E � �B sin2 �

� � (10L ster�1 cm�2) � �
2

� 7.85 lumen cm�2

Applying the cosine-fourth law, we find the illumination at C

EC � EB cos4 45°

� 7.85 � (0.707)4

� 1.96 lumen cm�2

Since there are 929 cm2 per square foot

EC � 929 � 1.96 � 1821 lumens ft�2

� 1821 footcandles

1
�
2
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Since the surface BC has a diffuse reflectivity of 70 percent, we can
multiply the illumination in footcandles by 0.7 to obtain the brightness
in foot-lamberts

B � 0.7 � 1821 � 1275 foot-lamberts

Similarly 0.7 times the illumination in lumens cm�2 will yield the
brightness in lamberts

B � 0.7 � 1.96 � 1.37 lamberts

Or we can retain the lumen units, and determine that, with 1.96
lumen cm�2 falling on a surface 70 percent reflectivity, 1.37 lumen
cm�2 will be emitted into a hemisphere, and, following our previous
reasoning, compute the brightness as

B �

� 0.44 lumen ster�1 cm�2

� 0.44 candle cm�2

The illumination at E is determined from Eq. 8.11 as before

H � TN� sin2 �

� TN�

E � TB�

� 0.8 � 0.44 � 10�4

� 0.35 � 10�4 lumen cm�2

� 929 � 0.35 � 10�4 � 0.032 footcandles

8.10 Illumination Devices

Searchlight

A searchlight is one of the simpler, and at the same time one of the
least understood, illuminating devices. It consists of a source of light
(usually small) placed at the focal point of a lens or reflector. The
image of the source is thus located at infinity. A common misconcep-
tion is that the beam of light produced is a “collimated parallel bun-
dle” which extends out to infinity with a constant diameter and a
constant power density. A little consideration of the matter will

1.37
�

�
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reveal the fallacy: the rays from any point on the source do indeed
form a collimated parallel bundle, etc. However, a geometrical point
on any source of finite brightness must emit zero energy, since a
point has zero area, and therefore the “collimated bundle” of rays has
zero energy.

With reference to Fig. 8.12, which shows a source S at the focal point
of lens L, the image (S′) will be located at infinity. Since source S sub-
tends an angle � from lens L, the image S′ will also subtend �. Now
the illumination at a point on the axis will be determined by the
brightness of the image and the solid angle subtended by the image.
Thus, for points near the lens, the illumination is given by

E � TB� (8.19)

which the reader will recognize as Eq. 8.8 rewritten in photometric
symbols and with a transmission constant (T) added. B is the bright-
ness of source S (since the brightness of an image equals the bright-
ness of the object) and � is the solid angle subtended by the image. (We
have tacitly assumed � to be small.) Now for a point at the lens, it is
obvious that the solid angle � subtended by the image S′ is exactly
equal to the solid angle subtended by the source S from the lens. Since
S′ is at infinity, this angle will not change as we shift our reference
point a short distance along the axis away from the lens, and the illu-
mination will remain constant in this region. However, at a distance 
D � (lens diameter)/�, the source image will subtend the same angle
as the diameter of the lens, and for points more distant than D, the
size of the solid angle subtended by the source of illumination will be
limited by the lens diameter. This solid angle will obviously be equal
to (area of lens)/d2 and the illumination beyond distance D will fall off
with the square of the distance (d) to the lens. Thus, the equations gov-
erning the illumination produced by a searchlight are

D � (8.20)

for d � D: E � TB� � (a constant) (8.21)

lens diameter 
��

�
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Figure 8.12 The optics of a searchlight.



for d � D: E � (8.22)

The general technique used here is applicable to almost any illumina-
tion problem, and we can restate it in general terms as follows:

To determine the illumination at a point, the size and position of the
source image, as seen from the point, are calculated. The pupils and win-
dows of the system (again, as seen from the point) are determined. Then
the illumination at the point is the product of the system transmission,
the source brightness and the solid angle subtended by that area of the
source which can be seen from the point through the pupils and windows
of the system, multiplied by the cosine of the angle of incidence.

Note that for points (which lie within the beam) beyond the critical
distance D, the searchlight acts as if it were a source of a diameter
equal to that of the searchlight lens and a brightness TB. As men-
tioned in Sec. 8.6, this concept is quite useful in evaluating the illumi-
nation at an image point; here we find that it occasionally can be
applied to points which are not image points.

The beam candle power of a searchlight is simply the intensity of the
(point) source which would produce the same illumination at a great
distance. A point source with an intensity of I candles will emit I
lumens per steradian. A one-square-foot area placed d feet from the
point source will subtend 1/d2 steradians from the source, and will
thus be illuminated by I/d2 lumens per square foot (footcandles). We
can determine the necessary candle power for I by equating this illu-
mination to that produced by the searchlight according to Eq. 8.22.

E � � (8.23)

and beam candlepower:

I � TB (lens area)

where I is the beam candle power in lumens per steradian (or candles).
Note that the lens area should be specified in the same units as the
source brightness.

Projection condenser

The second illumination device we shall consider is the projection con-
denser, which is schematically diagrammed in Fig. 8.13. The purpose
of the projector is to produce a bright and evenly illuminated image of
the film on the screen. This could be achieved by placing a sheet of dif-

TB (lens area) 
��

d2

I
�
d2

TB (lens area) 
��

d2
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fusing material behind the film and illuminating this diffuser. The
resultant image would be dim, because the maximum brightness
which the image could achieve would be that of the diffuser, which
would be considerably less than that of the lamp. The function of the
condenser is to image the source in the pupil of the projection lens so
that the lens aperture has the same brightness as the source. When
this is done, the screen is illuminated according to Eq. 8.11, where the
solid angle is that subtended by the source image (in the projection
lens) from the screen. It is apparent that the maximum value for the
screen illumination is limited by the size of the projection lens aper-
ture. Therefore, the maximum screen illumination is achieved when
the image of the source completely fills the aperture of the lens. This
is required for all points within the field of view, and the condenser
diameter must be sufficiently large so that it does not vignette, if max-
imum illumination at the edge of the picture is required. In this
regard, note that the ray from the corner of the film to the opposite
edge of the lens aperture is the most demanding. The cosine-fourth
rule will, of course, reduce the illumination at points off the axis.

From the above, one might conclude that with a condenser of suffi-
cient magnification, the image of a very small source could be magni-
fied enough to fill the pupil of the projection lens. The necessary
illuminating cone angle is determined by the film gate and its distance
to the lens pupil (i.e., to the image of the source). In Chap. 2 we found
that the magnification was given by m � h′/h � u/u′. The Abbe sine
condition uses m � sin u/sin u′ for systems of reasonable image quali-
ty. Since u′ in this case is fixed by the film gate, it is apparent that a
large magnification will require a large value of u. The largest value
that u can have is 90° with a sine of one; this establishes the limit on
the magnification that can be attained. This limit can be expressed as

� � � 1.0 (8.24)
P�
�
nS
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Figure 8.13 Schematic of a projection condenser system. The condenser
forms an image of the source (lamp filament) in the aperture of the pro-
jection lens.



where P is the aperture of the projection lens, � is the half-field angle
of projection, n is the index in which the source is immersed (usually
n � 1.0 for air), and S is the size of the source. It is impossible for Eq.
8.24 to exceed a value of 1.0; a value of 0.5 is typical of many systems.
Note that a value of 0.5 corresponds to a working speed of f/1.0 and
that a value of 1.0 would require a working speed of f/0.5. (Eq. 8.24 is
analogous to Eq. 9.24 for detector systems.)

When the source is irregular in shape, as in “V” filament lamps for
example, the solid angle for Eq. 8.11 is determined just as one might
expect, by dividing the area of the actual image of the filament by the
square of the distance to the screen. Condenser design is discussed in
Sec. 13.4.

Telescope brightness

The apparent brightness of an image as seen by the eye is a function
of the diameter of the pupil of the eye, since it determines the illumi-
nation of the retina, in accordance with Eq. 8.11a. When the eye is
used with an optical instrument, such as a telescope, the exit pupil of
the instrument enters the picture. If the exit pupil is larger than that
of the eye, then the apparent brightness of the object seen through the
instrument is equal to the brightness of the object (modified by trans-
mission losses and index effects), since the solid angle subtended by
the pupil from the retina is unchanged. When the instrument exit
pupil is smaller than that of the eye, then the apparent brightness of
the object is reduced in proportion to the relative areas of the pupils.
The exception to these brightness relationships of object and image
occurs when the object is smaller than the diffraction limit of the opti-
cal system (e.g., a star). Since this is not an extended source, all the
energy in the retinal image is concentrated on a few retinal receptors,
and when the magnification and aperture of a telescope are increased
so that its exit pupil diameter stays the same, its effective collection
area is increased (at the objective) so that more energy is concentrat-
ed on the same retinal cells (because the size of the retinal image is the
same, being governed by the diffraction limit), resulting in an increase
in the apparent brightness of the source. For example, if a high enough
power telescope of large aperture is used, stars may be seen in day-
light, since their apparent brightness is increased while that of the sky
(as an extended object) is not.

Integrating sphere

An integrating sphere is often used in the measurement of light and
light sources, and also as a uniform lambertian (diffuse) source of
light. It is a hollow sphere, coated on the inside with a highly reflec-
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tive white diffuse paint. If spot A on the inside of the sphere is illumi-
nated, the light reflected from this spot produces an illumination at
some other point B on the inside of the sphere. This illumination
varies with the cosines of angles � and � made by the line connecting
A and B with the normals to the sphere surface at A and B. Thus the
illumination at B varies as

(8.25)

where D is the distance from A to B, and this expression, for the inside
of a sphere, is a constant. Thus the entire inner surface of the sphere
is uniformly illuminated by the light reflected from the illuminated
spot. If we cut two small holes in the sphere, one to admit light and the
other (in a location not directly illuminated by the first hole) for a light
sensor, we have a device which can read the amount of radiation
admitted into the sphere without any variation of sensitivity resulting
from the direction of the light, the size of the beam, or the position of
the beam in the admitting hole. The total radiation emitted by a lamp
or other source which is placed inside the sphere can readily be mea-
sured. Conversely, if the light sensor is replaced by a source of light,
then the other hole becomes an almost perfect, uniform, unpolarized,
lambertian source of radiation.
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Exercises

1 A point source emits 10 W/ster toward a 4-in-diameter optical system. How
much power is collected by the optical system when its distance from the
source is (a) 10ft, (b) 1 mi?

ANSWER: (a) 8.73 � 10�3 W; (b) 3.13 � 10�8 W

2 A 10-candlepower point source illuminates a perfectly diffusing surface
which is tilted at 45° to the line of sight to the source. What is the brightness
of the surface if it is 10 ft from the source?

ANSWER: 0.0707 foot-lamberts, or 2.42 � 10�5 candles cm�2.

3 A fluorescent lamp 10 in long and 1 in wide illuminates a slit, parallel to
the lamp, which is 10 in long and 10 in from the lamp. If the lamp has a bright-
ness of 0.5 candles cm�2, what is the illumination (a) at the center of the slit,
and (b) at the ends of the slit? (Hint: Divide the lamp into 10 one-inch-square
sources.)
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ANSWER: (a) 0.043 lumens cm�2, or 40.2 footcandles

(b) 0.032 lumens cm�2, or 29.9 footcandles

4 A 16-mm projector uses a 2-in f/1.6 projection lens and a lamp with a fila-
ment brightness of 3000 candles cm�2. If the condenser fills the lens aperture
with the filament image, what is the illumination produced on a screen 20 ft
from the lens? Assume the transmission of the lens is 95 percent and the
transmission of the condenser is 85 percent.

ANSWER: 47.9 footcandles, or 5.16 � 10�2 phot

5 (a) What is the spectral radiant emittance of a 1000-K blackbody in the
region of 2 �m wavelength? What is the radiance? (b) If an idealized bandpass
filter, transmitting only between 1.95 and 2.05 �m, is used, what is the total
power falling on a 1-cm2 detector placed 1 m from a 1-cm2 1000-K blackbody?
(Use Fig. 8.7.)

ANSWER: (a) emittance 0.89 W cm�2 �m�1; radiance � 0.89/� � 0.283 W cm�2

ster�1 �m�1

(b) 2.83 � 10�6 W

6 Show that, for long projection distances, the maximum lumen output of a
projector is given by

F � lumens

where A is the area of the film gate, B the source brightness, T the transmis-
sion of the system, and (f/#) is the relative aperture of the projection lens.

�ABT
�
4 (f/#)2
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Basic Optical Devices

This chapter will be devoted to the first-order optics of several typical
optical systems. The number of systems covered here is, of necessity,
limited, and the emphasis is placed on those fundamental principles
which are applicable to a broad range of optical systems. The rather
straightforward algebraic manipulations and the considerations of
image size and position which follow are quite typical of those encoun-
tered in the preliminary stages of optical system design.
Constructional details of the optical components have been deliber-
ately omitted and are discussed at considerable length in later chap-
ters. Note that the system diagrams in this chapter show the
components as simple lenses. These could equally well be mirrors
instead of lenses, and typically are fairly complex assemblies of lens
elements.

9.1 Telescopes, Afocal Systems

The primary function of a telescope is to enlarge the apparent size of
a distant object. This is accomplished by presenting to the eye an
image which subtends a larger angle (from the eye) than does the
object. The magnification, or power, of a telescope is simply the ratio of
the angle subtended by the image to the angle subtended by the
object.* Nominally, a telescope works with both its object and image
located at infinity; it is referred to as an afocal instrument, since it has
no focal length. In the following material, a number of basic relation-
ships for telescopes and afocals will be presented, all based on systems
with both object and image located at infinity. In practice, small 
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*For large angles, the magnification is the ratio of the tangents of the half-angles.



departures from these infinite conjugates are the rule, but for the most
part they may be neglected. However, the reader should be aware that
the fact that the object and/or the image are not at infinity will occa-
sionally have a noticeable effect and must then be taken into account.
This is usually important only with low-power devices. See also the
comments on instrument myopia in Sec. 5.4.

There are three major types of telescopes: astronomical (or invert-
ing), terrestrial (or erecting), and Galilean. An astronomical or
Keplerian telescope is composed of two positive (i.e., converging) com-
ponents spaced so that the second focal point of the first component
coincides with the first focal point of the second, as shown in Fig.
9.1a.The objective lens (the component nearer the object) forms an
inverted image at its focal point; the eyelens then reimages the object
at infinity where it may be comfortably viewed by a relaxed eye. Since
the internal image is inverted, and the eyelens does not reinvert the
image, the view presented to the eye is inverted top to bottom and
reversed left to right.

In a Galilean, or “Dutch,” telescope, 9.1b, the positive eyelens is
replaced by a negative (diverging) eyelens; the spacing is the same, in
that the focal points of objective and eyelens coincide. In the Galilean
scope, however, the internal image is never actually formed; the object
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for the eyelens is a “virtual” object, no inversion occurs, and the final
image presented to the eye is erect and unreversed. Since there is no
real image formed in a Galilean telescope, there is no location where
cross hairs or a reticle may be inserted.

Assuming the components of the telescope to be thin lenses, we can
derive several important relationships which apply to all telescopes
and afocal systems and which are of great utility. First, it is readily
apparent that the length (D) of a simple telescope is equal to the sum
of the focal lengths of the objective and eyelens.

D � fo � fe (9.1)

Note that in the Galilean telescope, the spacing is the difference
between the absolute values of the focal lengths since fe is negative.

The magnification, or magnifying power, of the telescope is the ratio
between ue, the angle subtended by the image, and uo, the angle sub-
tended by the object. The size (h) of the internal image formed by the
objective will be

h � uo fo (9.2)

and the angle subtended by this image from the first principal point of
the eyelens will be

ue � (9.3)

Combining Eqs. 9.2 and 9.3, we get the magnification

MP � � (9.4)

and

fe � D/(1 � MP)

fo � MPD/(1 � MP)

The sign convention here is that a positive magnification indicates an
erect image. Thus, if objective and eyelens both have positive focal
lengths, MP is negative and the telescope is inverting. The Galilean
scope with objective and eyelens of opposite sign produces a positive
MP and an erect image.

Note that uo can represent the real angular field of view of the tele-
scope and ue the apparent angular field of view, and that Eq. 9.4
defines the relationship between the real and apparent fields for small
angles. For large angles, the tangents of the half-field angles should be
substituted in this expression.

�fo�
fe

ue�
uo

�h
�
fe
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From Chap. 6 we recall that the exit pupil of a system is the image
(formed by the system) of the entrance pupil. In most telescopes the
objective clear aperture is the entrance pupil and the exit pupil is the
image of the objective as formed by the eyelens. Using the newtonian
expression relating object and image sizes (h′�hf/x), and substituting
CAe (the exit pupil diameter) and CAo (the entrance pupil diameter) for
h′ and h, fe for f, and �fo for x, we get

� � MP (9.5)

While the above derivation has assumed the entrance pupil to be at
the objective, Eq. 9.5 is valid regardless of the pupil location, as is obvi-
ous from the rays sketched in Fig. 9.1.

We also can get a simple expression for the eye relief of the Kepler
telescope as follows:

R � (MP � 1) fe /MP

The amount of motion of the eyepiece needed to focus the telescope
for someone who is nearsighted or farsighted is given by

� � Df 2
e /1000

where � is in millimeters and D is in diopters.
Equations 9.4 and 9.5 can be combined to relate the external char-

acteristics (magnifications, fields of view, and pupils) of any afocal sys-
tem, regardless of its internal construction

MP � � (9.6)

The erecting telescope, Fig. 9.1c, consists of positive objective and
eyelenses with an erecting lens between the two. The erector reimages
the image formed by the objective into the focal plane of the eyelens.
Since it inverts the image in the process, the final image presented to
the eye is erect. This is the form of telescope ordinarily used for observ-
ing terrestrial objects, where considerable confusion can result from
an inverted image. (An erect image may also be obtained by the use of
an erecting prism as discussed in Chap. 4.) The magnification of a ter-
restrial telescope is simply the magnification that the telescope would
have without the erector, multiplied by the linear magnification of the
erector system

MP � � � (9.7)s2�
s1

fo�
fe

CAo�
CAe

ue�
uo

�fo�
fe

CAo�
CAe
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where s2 and s1 are the erector conjugates as indicated in Fig. 9.1c. For
a scope as shown, fo, fe, and s2 are positive signed quantities and s1 is
negative. The resulting MP is thus positive, indicating an erect image.

An afocal system is the basis of the laser beam expander. The beam
diameter of a laser is enlarged by a factor equal to the MP when the
laser beam is sent into the eyepiece end of the telescope. Expansion of
the beam reduces the beam divergence. The Galilean form (Fig. 9.1b)
is usually preferred because there is no focus (which can cause a
breakdown of the air if the laser is powerful) and the optical design
characteristics are more favorable. However, the Keplerian form (Fig.
9.1a) is used when a spatial filter (a pinhole at the focus) is necessary.

An afocal system can also be used to change the power, focal length,
and/or the field of view of another system by inserting it in a space in
the system where the light is collimated (i.e., where the object or image
is at infinity.) (See Sec. 13.3 and Fig. 13.32.)

Note that an afocal system can be used to image objects which are
not at an infinite distance. For example, the exit pupil of a telescope is
the image of the aperture stop, which is usually at the objective lens.
Again, a consideration of the rays diagramed in Fig. 9.1 will indicate
that the linear magnification m is the same, regardless of where the
object and image are located. The magnification m�h′/h is equal to the
reciprocal of the angular magnification, MP. Thus, m�h′/h�1/MP.
Note that if the aperture stop is placed at the internal focus, then the
afocal system becomes telecentric in both object and image space.

9.2 Field Lenses and Relay Systems

In a simple two-element telescope as shown in Fig 9.2a, the field of
view is limited by the diameter of the eyelens (as was discussed at
greater length in Chap. 6). In the sketch, the solid rays indicate the
largest field angle that a bundle may have and still pass through the
telescope without vignetting; for the bundle represented by the dashed
rays, only the ray through the upper rim of the objective gets through,
and vignetting is effectively complete.

The function of a field lens is indicated in Fig. 9.2b. If the field lens
is placed exactly at the internal image, it has no effect on the power of
the telescope, but it bends the ray bundles (which would otherwise miss
the eyelens) back toward the axis so that they pass through the eye-
lens. In this way the field of view may be increased without increasing
the diameter of the eyelens. Note that the exit pupil is shifted to the
left, closer to the eyelens, by the introduction of a positive field lens.
The distance from the vertex of the eyelens to the exit pupil is called
the “eye relief” (since the eye must be placed at the pupil to see the full
field of view). The necessity for a positive eye relief obviously limits the
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strength of the field lens that can be used. In practice, field lenses are
rarely located exactly at the image plane, but either ahead of or behind
the image, so that imperfections in the field lens are out of focus and
are not visible.

Periscopes and endoscopes

When it is desired to carry an image through a relatively long distance
and the available space limits the diameter of the lenses which can be
used, a system of relay lenses can be effective. In Fig. 9.3, the objective
lens forms its image in field lens A. The image is then relayed to field
lens C by lens B which functions like an erector lens. The image is then
relayed again by lens D. The power of field lens A is chosen so that it
forms an image of the objective at lens B; similarly, field lens C forms
an image of lens B in lens D. In this way, the entrance pupil (which, in
this example, is at the objective) is imaged at each of the relay lenses
in turn and the image of the object is passed through the system with-
out vignetting. The dashed rays emerging from lens A will indicate the
large diameters which would otherwise be necessary to cover the same
field of view. This type of system is used in periscopes and endoscopes.

An optimum arrangement for most optical systems is often the lay-
out with the least total amount of lens power. In a periscope system the
minimum power system is simple to design. Given the maximum lens
diameter (which is determined by the available space) the image at the
field lenses is arranged to fill this diameter, and the clear aperture of
the relay lens is filled with the beam. Thus, with reference to Fig. 9.3,
the focal length of the objective is set equal to the field lens CA divided
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by the total field of view, and the distance from A to B is the product of
the relay lens CA times the f-number of the objective lens. Lenses B, C,
D, etc., all have the same focal length, which is half the distance from
A to B, and lenses B, C, D, etc., are all working at unit magnification
(m � �1). This arrangement yields the minimum lens power for the
system; this is the best layout for a periscope system.

An endoscope is a miniature periscope used to examine the inside of
a cavity through a small orifice; they are widely used in medical appli-
cations. The size of the optics in a medical endoscope is on the order of
2 or 3 mm in diameter. The equivalent air path is the actual physical
path divided by the index of refraction. In an endoscope or periscope,
the number of relay stages is determined by the length of the instru-
ment. If the airspaces are filled with glass, the equivalent air path is
shortened by a factor equal to the index of the glass, and the number
of relay stages is thereby reduced. Rather than simply fill the spaces
with rods of glass, the relay lenses are typically made as cemented
doublets, with the flint (negative) element made thick enough to fill
the space. The outer surface of the flint is made convex so that it func-
tions as the field lens. This is often referred to as a rod-lens endoscope.
The reduction in the number of relay components both reduces the cost
of the endoscope and improves the image quality (especially by reduc-
ing the secondary spectrum and the Petzval field curvature).

9.3 Exit Pupils, the Eye, and Resolution

Since almost all telescopes are visual instruments, they must be
designed to be compatible with the characteristics of the human eye.
In Chap. 5, we saw that the pupil of the eye varied in diameter from 2
mm to about 8 mm, depending on the age of the viewer and the bright-
ness of the scene being viewed. Since the pupil of the eye is, in effect,
a stop of a telescopic system, its effect must be considered. For ordi-
nary use, an exit pupil of 3 mm diameter will fill the pupil of the eye
and no increase in retinal illumination will be obtained by providing a
larger exit pupil. From Eq. 9.5, it is apparent that the maximum effec-
tive clear aperture for an ordinary telescope objective is thus limited to
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a diameter of about 3 mm times the magnification. In practice, this is,
however, a fairly flexible situation. In surveying instruments exit
pupils of 1.0 to 1.5 mm are common, since size and weight are at a pre-
mium and resolution is the most desired characteristic. In ordinary
binoculars, a 5-mm pupil is usually provided; the added pupil diame-
ter makes it much easier to align the binocular with the eyes. For the
same reason, rifle scopes usually have exit pupils ranging in size from
5 to 10 mm. Telescopes and binoculars designed for use at low light lev-
els (such as night glasses) usually have 7- or 8-mm exit pupils in order
to obtain the maximum retinal illumination possible when the pupil of
the eye is large.

In Chap. 5, it was indicated that the resolution of the eye was at best
about one minute of arc; Chap. 6 indicated that the angular resolution
of a perfect optical system was (5.5/D) seconds of arc when the clear
aperture of the system (D) was expressed in inches. One or both of
these limitations will govern the effective performance of any tele-
scope, and for the most efficient design of a telescope, both should be
taken into account. If two objects which are to be resolved are sepa-
rated by an angle �, after magnification by a telescope their images
will be separated by (MP)�. If (MP)� exceeds one minute of arc, the eye
will be able to separate the two images; if (MP)� is less than one
minute, the two objects will not be seen as separate and distinct. Thus,
the magnification of a telescope should be chosen so that

MP � (� in minutes)

� (� in radians) (9.8)

where � is the angle to be resolved. For critical work, a magnification
value considerably larger than indicated in Eq. 9.8 is often selected in
order to minimize the visual fatigue of the viewer.

From the opposite point of view, since the resolution of a telescope
(in object space) is limited to (5.5/D) seconds, it is apparent that the
smallest resolved detail in the image presented to the eye will subtend
an angle of (MP) (5.5/D) seconds, and if this angle equals or exceeds
one minute, the eye can discern all of the resolved details. Equating
this angle to one minute (60 seconds), we find that the maximum “use-
ful” power for a telescope is

MP � 11D (9.9)

(when D is in inches). Magnification in excess of this power is termed
empty magnification, since it produces no increase in resolution.
However, it is not unusual to utilize magnifications two or three times

0.0003
�

�

1
�
�
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this amount to minimize visual effort. The upper limit on effective
magnification usually occurs at the point when the diffraction blurring
of the image becomes a distraction sufficient to offset the gain in visu-
al facility.

Example A

As numerical examples to illustrate the preceding sections, we will
determine the necessary powers and spacings to produce a telescope
with the following characteristics: a magnification of 4� and a length
of 10 in. We will do this in turn for an inverting telescope, a Galilean
telescope, and an erecting telescope, and will discuss the effects of
arbitrarily limiting the element diameters to 1 in.

For a telescope with only two components, it is apparent that Eqs.
9.1 and 9.4 together determine the powers of the objective and eyelens.
Thus, we have

D � fo � fe � 10 in

and

MP � � ±4�

where the sign of the magnification will determine whether the final
image is erect (�) or inverted (�). Combining the two expressions and
solving for the focal lengths, we get

fo �

fe �

For the inverting telescope, we simply substitute MP � �4 and D � 10
in, to find that the required focal length for the objective is 8 in; for the
eyelens, it is 2 in. Since the lens diameters are to be 1 in, the exit pupil
diameter is 0.25 in (from Eq. 9.5). The position of the exit pupil can be
determined by tracing a ray from the center of the objective through
the edge of the eyelens or by use of the thin-lens equation (Eq. 2.4), as
follows:

� � � � � � � 0.4

s′ � 2.5 in

1
�
10

1
�
2

1
�
(�D)

1
�
fe

1
�
s

1
�
f

1
�
s′

D
��
1 � (MP)

(MP) D
��
(MP) � 1

�fo�
fe
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Thus, the eye relief of our simple telescope is 212 in.
The field of view of this telescope is not clearly defined, since it is

determined by vignetting at the eyelens, as consideration of Fig. 9.4
will indicate. The aperture will be 50 percent vignetted at a field angle
such that the principal (or chief) ray passes through the rim of the eye-
lens. Under these conditions

uo � � � ±0.05 radians

and the real* field of view totals 0.1 radians, or about 5.7°.
This is a poor representation of what the eye will see, however, since

the vignetted exit pupil at this angle closely approximates a semicircle
0.25 in in diameter and can thus completely fill a 3-mm eye pupil. The
field angle at which no rays get through the telescope is a somewhat
more representative value for the field of view. If we visualize the size
of uo in Fig. 9.4 as being slowly increased, it is apparent that the ray
from the bottom of the objective will be the first to miss the eyelens
and the ray from the top of the objective will be the last to be vignetted
out. For the example we have chosen, with both lenses 1 in in diame-
ter, it is apparent that the limiting diameter of the internal image will
also be 1 in. (For differing lens diameters, it is a simple exercise in pro-
portion to determine the height at which this ray strikes the internal
focal plane.) The half field of view for 100 percent vignetting is then
the quotient of the semidiameter of the image divided by the objective
focal length, or ±0.0625 radians; the total real field is 0.125 radians, or
about 7.1°.

Thus, for an exit pupil of 0.25 in, the field of view is totally vignetted
at 0.125 rad, 50 percent vignetted at 0.1 rad, and unvignetted at 0.075
rad. These three conditions are illustrated in Fig. 9.5, and it is appar-
ent that the “effective” position of the exit pupil shifts inward as the
amount of vignetting increases.

1
�
2 � 10

dia. eyelens
��

2D
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Figure 9.4 The inverting telescope of Example A.

*The real field of a telescope is the (angular) field in the object space. The apparent
field is the (angular) field in the image (i.e., eye) space.



Let us now determine the minimum power for a field lens which will
completely eliminate the vignetting at a field angle of ±0.0625 rad.
From Fig. 9.6, it can be seen that the field lens must bend the rays
from the objective so that ray B strikes no higher than the upper rim
of the eyelens. The slope of ray B is equal to 1 in (the difference in the
heights at which it strikes the objective and the field lens) divided by
8 in (the distance from field lens to objective), or �0.125. After passing
through the field lens, we desire the slope to be zero (in this case) as
indicated by the dashed ray B′. Using Eq. 2.41, we can solve for the
power of the field lens as follows:

u′ � u � y�f

0.0 � �0.125� (0.5) �f

�f � �0.25

ff � � 4 in

We can now determine the new eye relief by tracing a principal ray
from the center of the objective through the field and eye lenses.

1
�
�
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Figure 9.5 The vignetting action of the eyelens determines the
field of view in an astronomical telescope.

Figure 9.6 Ray diagram used to determine field lens pow-
er in Example A.



u′o � � �0.0625 � uf

u′f � uf � yf�f � �0.0625 � 0.5 (0.25) � �0.0625

ye � yf � u′f fe � 0.5 � 0.0625 (2) � 0.375

u′e � u′f � ye�e � �0.0625 � 0.375 (0.5) � �0.25

l′e � eye relief � � � 1.5 in

Note that u′e and uo are still related by the magnification, as in Eq. 9.4,
where

MP � � � �4�

since the power of the system has not been changed by the introduc-
tion of the field lens located exactly at the focal plane. If we desire to
locate the field lens slightly out of the focal plane, the general
approach would be the same; the distances, ray heights, etc., in the
computations would, of course, be modified accordingly. The power of
the telescope would be increased if the field lens were placed to the
right of the focus, and vice versa. In either case the scope is slightly
shortened.

For the Galilean version of our telescope, we solve for the component
focal lengths by substituting �4� for the magnification in the equa-
tions in the second paragraph of Example A and get

fo � � � �13.33 in

fe � � � �3.33 in

If we assume the aperture stop to be at the objective lens of a Galilean
telescope, the exit pupil will be found to be inside the telescope, and we
obviously cannot put the viewer’s eye there. Thus in a Galilean scope
the aperture stop is not the objective lens but is the pupil of the user’s
eye, and the exit pupil is wherever the eye is located. This is usually
about 5 mm behind the eyelens. To determine the field of view, we must
trace a principal ray through the center of the pupil and passing
through the edge of the objective, as indicated in Fig. 9.7. This can be
done by assuming some arbitrary value for ue and tracing the ray
through, then scaling the ray data by an appropriate constant (as indi-
cated in Chap. 6) to make the ray height at the objective equal to one-
half its clear aperture. To simplify matters, we will assume here that the
pupil is coincident with the eyelens; thus, ue is equal to half the objec-

10
��
1 � (�4)

D
��
1 � (MP)

(�4) 10
��

�4 � 1

(MP) D
��
(MP) � 1

�0.25
��

�0.0625
u′e�
uo

�0.375
�
�0.25

�ye�
u′e

yf
�
fo
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tive diameter divided by the spacing between the lenses, or 0.05 radians
in this instance. Since MP�ue/uo per Eq. 9.4, we can solve for
uo�0.05/4�0.0125 radians. The total real field is 0.025 radians (about
1.5°), considerably less than that of the inverting telescope discussed
above. Note that the same type of field vignetting considerations as dis-
cussed related to the eyelens of the astronomical telescope may be
applied to the objective of the Galilean telescope. One must also bear in
mind that the direction of the Galilean field of view can be changed by
a lateral shift of the viewer’s eye; this is not true for a telescope with a
real internal image when the field stop is located at the image.

For the erecting telescope example, we will lay out a telescopic rifle
sight, with a magnification of �4�, a length of 10 in, and a maximum
lens diameter of 1 in, as before. For small-caliber (.22) rifles, a 2-in eye
relief is acceptable; for heavier guns, eye reliefs of 3 to 5 in are com-
mon. Let us assume that we desire an eye relief of 4 in and design the
telescope accordingly. The entrance pupil (at the objective) has a diam-
eter of 1 in; by Eq. 9.6, the exit pupil diameter is thus 0.25 in. Again
by Eq. 9.6, the apparent field at the eyepiece (ue) is equal to 4uo, where
uo is the real field. With reference to Fig. 9.8, it is apparent that ue is
limited by the diameter of the eyelens and that for an unvignetted
pupil and a 1-in-diameter eyelens, the 4-in eye relief R limits us to an
apparent field as follows:

ue � 4uo � ± (eyelens dia. � pupil dia.)

� ± (1 � 0.25) � ±0.09375

uo � ±0.0234 � (±1.3°)

To determine the spacing and powers of the components, we note
that the length will be

L � fo � s1 � s2 � fe

and the magnification will be

1
�
2 � 4

1
�
2R
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Figure 9.7 In a Galilean tele-
scope, the field of view is deter-
mined by the diameter of the
objective lens and the location of
the exit pupil, which is usually
the pupil of the observer’s eye.



M �

We can combine these expressions and derive equations for s1, s2,
and fr in terms of M, L, fo, and fe as follows:

s1 �

s2 � �

fr � �

At this point, we are faced with a situation which is very common in
the layout stages of optical design. We can elect to proceed alge-
braically to find an expression for fo and fe which will yield a scope with
the desired eye relief R, or we can proceed numerically. In general, for
a one-time solution, the numerical approach is usually the better
choice, especially if the system under consideration is well understood.
If one is likely to design a number of systems of the same type with
various parameters, or if one is “exploring” and wishes to locate all
possible solutions, the often tedious labor of an algebraic solution may
be well repaid.

The preceding equations indicate that we have two choices (or
degrees of freedom) which we can make, namely fo and fe, and arrive at
a 4� scope of 10-in length; we have not, however, included the eye
relief in these equations. To resolve this situation numerically, we
would now assume some reasonable value for fo, then proceed to test
various values of fe, selecting the value of fe which yields the desired
value for the eye relief R. Since R is not a critical dimension, a graph-
ic solution (after a few values of fe have been tried), plotting R versus
fe would be quite adequate for our purpose. Repeating the process for

Mfe fo (L � fo � fe)
���

(Mf e � fo)2

s1s2
�
s1 � s2

Mfe (L � fo � fe)
��

(Mfe � fo)

�s1 Mfe
�

fo

�fo (L � fo � fe)
��

(Mfe � fo)

�fos2
�
fes1
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Figure 9.8 Optics of a simple erecting telescope.



several additional values of fo would then indicate the range of solu-
tions available.

To arrive at a solution analytically, we would proceed as follows: a
principal ray, starting at the center of the objective lens with some
arbitrary slope angle would be ray-traced by thin-lens equations (2.41,
2.42, and 2.43), using the symbolic values for the spacings and lens
powers derived from the three equations immediately preceding. The
symbolic values for the powers and spacings involved would thus be:

First airspace � fo � s1 � fo �

Erector power �r � �

Second airspace � s2 � fe � fe �

Eyelens power �e �

The expression for the final intercept length of this ray, l′e � �ye/u′e is
then equated to the eye relief R, and a solution for fe expressed in
terms of fo, M, L, and R is extracted. As can be imagined, the procedure
is lengthy and the probability of making an error in the derivation is
approximately unity for the first few attempts. Careful work and fre-
quent checking are not only advisable, they are mandatory. When the
smoke has cleared away, one finds that

fe �

and that for any chosen value for fo (which is less than L and more
than zero), a set of powers and spacings can be obtained which will sat-
isfy our original conditions for power M, length L, and eye relief R.

We are now faced, regardless of whether we have arrived via num-
bers or symbols, with the problem of determining what is a suitable
value for fo upon which to base our solution. There are a number of cri-
teria by which to judge the value of a given solution. In general, one
desires to minimize the power of the components in any given system;
in subsequent chapters, it will become apparent that it is often advis-
able to minimize one or all of the following: �|�|, �|y�|, �|y2�|
(where the symbol |x| indicates the absolute value of x), � is the com-
ponent power, and y represents the height of either the axial or prin-
cipal ray on the component, or the element semiclear aperture.

M 2RL � fo (M 2R � L)
���
M 2 (R � L) �fo (M�1)2

1
�
fe

Mfe (L � fo � fe)
��

(Mfe � fo)

(Mfe � fo )2

���
Mfe fo (L� fo � fe)

1
�
fr

fo (L � fo � fe)
��

(Mfe � fo)
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Avoiding, for a few chapters at least, the rationale behind these
desiderata, we shall proceed to indicate the technique. For a number
of arbitrarily chosen values of fo, we determine the required values for
fr and fe (as well as s1 and s2). Then the values of the component pow-
ers �o, �r, and �e (where � � 1/f ) as well as �|�|�|�o|�|�r|�|�e|
are plotted against fo, resulting in a graph as shown in Fig. 9.9. Note
that the minimum �|�| occurs in the region of fo�3.5; for want of a
better criterion, this is a reasonable choice.

To carry the matter a bit further, we can trace an axial ray and a
principal ray through each solution. The axial ray has starting data
(at the objective) of y�0.5 and u�0; the principal ray starting data is
yp�0 and up�0.0234375, chosen on the basis of eye relief and eyelens
diameter considerations as discussed several paragraphs above.
From these ray traces, we can determine the axial ray height y at
each lens, y2, and the necessary minimum clear diameter at each lens
D�2(|y|�|yp|) to pass the full bundle of rays at the edge of the
field. It turns out that under the conditions we have established, the
diameter for the objective and eyelens must be 1 in, and the diame-
ter of the erector lens is 0.3125 in for all values of fo. From this infor-
mation, a graph as shown in Fig. 9.10 can be plotted. The choice of
which of the four minima to select must be made on the basis of
material which is contained in subsequent chapters. In general, how-
ever, a minimum �|�| in this example would reduce the Petzval cur-
vature of field, a minimum �|D�| would reduce the cost of making
the optics, and minimum �|D�|, �|y�|, or �|y2�| would tend to
reduce other aberrations, the choice being dependent upon which
aberration one most desired to reduce.

Assuming that we have chosen fo��4, the values of the lens powers
and spacings would be determined as follows:
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Figure 9.9 Plot of the element
powers for a 10-in-long erecting
telescope with 4-in eye relief ver-
sus the arbitrarily chosen objec-
tive focal length. �0, �r, and �e
are the powers of the objective,
erector, and eyelens, respectively.



fo � �4

fe � � � 1.8298

s1 � � �1.4737

s2 � � �2.6965

fr � � �0.9529

9.4 The Simple Microscope or Magnifier

A microscope is an optical system which presents to the eye an
enlarged image of a near object. The image is enlarged in the sense
that it subtends (from the eye) a greater angle than the object does
when viewed at normal viewing distance. The “normal viewing dis-
tance” is conventionally considered to be about 10 in; this represents
an average value for the distance at which most people see detail most
clearly. (Obviously, very young people can see detail in objects a few
inches from the eye and mature persons whose visual accommodation
is failing may have difficulty focusing on objects several feet away.)
The magnification or magnifying power of a microscope is defined as
the ratio of the visual angle subtended by the image to the angle sub-
tended by the object at a distance of 10 in from the eye.

The simple microscope or magnifying glass consists of a lens with the
object located at or within its first focal point. In Fig. 9.11, the object h,
a distance s from the magnifier, is imaged at a distance s′ with a 

� (�1.4737) � 4 � 1.8298
����

(4 � 1.8298 � 4)

� (�1.4737) � 4 � 1.8298
����

4

�4 (10 � 4 � 1.8298)
���

(4 � 1.8298 � 4)

4 � 4 � 4 � 10 � 4 (4 � 4 � 4 � 10)
�����

4 � 4 (4 � 10) � 4 (4 � 1) (4 � 1)
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height h′. As shown, the image is virtual and both s and s′ are negative 
quantities according to our sign convention. We can readily determine
the magnification by using the first-order equations (2.4 and 2.7) as fol-
lows. The object and image distance equation

� �

is solved for s

s �

and substituted into the equation for the image height

h′ � �

Now if the eye is located at the lens, the angle subtended by the
image is given by

�′ � �

If the unaided eye were to view the object at a distance of �10 in,
the angle subtended would be

� �

The magnifying power is the ratio between these two angles

MP � � �

� � (9.10)

Thus we find that the magnification produced by a simple micro-
scope depends not only on its focal length but on the focus position cho-
sen. If one adjusts the object distance so that the image is at infinity

10 in
�

s′

10 in
�

f

(�10 in) 
��

h

h (f � s′)
��

fs′

�′
�
�

�h
�
10 in

h (f � s′)
��

fs′
h′
�
s′

h (f � s′)
��

f

hs′
�
s

fs′
�
f � s′

1
�
s

1
�
f

1
�
s′
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Figure 9.11 The simple micro-
scope, or magnifier, forms an
erect, virtual image of the object.



(i.e., s � �f and s′ � �) and can be viewed with a relaxed eye, then the
magnification becomes simply

MP � (9.10a)

If the focus is set so that the image appears to be 10 in away (i.e., s′ �
�10 in) then

MP � � 1 (9.10b)

The value of MP given by Eq. 9.10a is conventionally used to express
the power of magnifiers, eyepieces, and even compound microscopes.

The preceding assumed that the eye was located at the lens. If the
image is not located at infinity, the magnifying power will be reduced
as the eye is moved away from the lens. If R is the lens-to-eye distance,
the magnification becomes

MP � (9.10c)

Note that if the dimensions are in millimeters, the constant 10
becomes 254.

9.5 The Compound Microscope

As illustrated in Fig. 9.12, a compound microscope consists of an objec-
tive lens and an eyelens. The objective lens produces a real inverted
image (usually enlarged) of the object. The eyelens reimages the object
at a comfortable viewing distance and magnifies the image still fur-
ther. The magnifying power of the system can be determined by sub-
stituting the value of the combined focal length of the two components
(as given by Eq. 2.45) into Eq. 9.10a

feo � (9.11)

MP � �
(fe � fo � d) 10 in
���

fe fo

10 in
�

feo

fefo
��
fe � fo � d

10 (f � s′)
��
f (s′ � R)

10 in
�

f

10 in
�

f
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Figure 9.12 The compound microscope.



The more conventional way to determine the magnification is to
view it as the product of the objective magnification times the eyepiece
magnification. With reference to Fig. 9.12, this approach gives

MP � Mo � Me � � (9.12)

Equations 9.11 and 9.12 yield exactly the same value of magnification,
as can be shown by substituting (d � fe) for s2; determining s1 in terms
of d, fe, and fo (from Eq. 2.4); and substituting in Eq. 9.12 to get Eq.
9.11.

An ordinary laboratory microscope has a tube length of 160 mm. The
tube length is the distance from the second (i.e., internal) focal point
of the objective to the first focal point of the eyepiece. Thus, by Eq. 2.6,
the objective magnification is 160/fo, and rewriting Eq. 9.12 for mil-
limeter measure, we get

MP � � (9.13)

Standard microscope optics are usually referred to by their power.
Thus, a 16-mm focal length objective has a power of 10� and an 0.5-in
focal length eyepiece has a power of 20�. The combination of the two
would have a magnifying power of 200�, or 200 diameters.

The resolution of a microscope is limited by both diffraction and the
resolution of the eye in the same manner as in a telescope. In the case
of the microscope, however, we are interested in the linear resolution
rather than angular resolution. By Rayleigh’s criterion, the smallest
separation between two object points that will allow them to be
resolved is given by Eq. 6.20

Z �

where 	 is wavelength and NA�n sin U, the numerical aperture of the
system. Note that the index n and the slope of the marginal ray U are
those at the object. Because of the importance of the numerical aper-
ture in this regard, microscope objectives are usually specified by pow-
er and numerical aperture; for example, a 16-mm objective is usually
listed as a 10�NA 0.25.

At a distance of 10 in, the visual resolution of one minute of arc
(0.0003 radians) corresponds to a linear resolution of about 0.003 in, or
0.076 mm. When the object is magnified by an optical system, the visu-
al resolution at the object is thus

R � � (9.14)
0.076 mm
��

MP

0.003 in
�

MP

0.61	
�

NA

254
�

fe

�160
�

fo

10 in
�

fe

s2
�
s1
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If we now equate the visual resolution R with the diffraction limit Z
and solve for the magnification, we find that

MP � (9.15)

with 	 in millimeters, is the magnifcation at which the diffraction lim-
it and visual limit match. At this power the eye can resolve all the
detail present in the image, and setting 	�0.55 �m, any magnification
beyond 225 NA is “empty magnification.” However, as with telescopes,
magnifications several times this amount are regularly used, as dis-
cussed in Sec. 9.3.

9.6 Rangefinders

Figure 9.13 is a schematic diagram of a simplified triangulation
rangefinder. The eye views the object by two paths; directly through
semitransparent mirror M1 and by an offset path via M1 and fully
reflecting mirror M2. The angular position of one of the mirrors is
adjusted until both images coincide. In the rudimentary instrument
shown here, a pointer attached to mirror M2 can be used to read the
value of �/2; the distance to the object is found from

D � (9.16)

where B is the base length of the instrument. In actual rangefinders,
a telescope is often combined with the mirror system to increase the

B
�
tan �

0.12 NA
�
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Figure 9.13 Basic rangefinder
optical system. The eye views
the object directly through semi-
reflector M1 and also through
movable mirror M2. The angular
setting of M2 which brings both
views into coincidence deter-
mines the range.



accuracy of the reading, and any one of a number of devices may be
used to determine �; the distance is usually read directly from a suit-
able range scale so that no calculation is necessary.

The accuracy of the value of D depends on how accurately � can be
measured. For large ratios of D/B, we can write

D � (9.17)

and differentiating with respect to �, we get

dD � �B��2 d� (9.18a)

Substituting ��B/D into Eq. 9.18a, we find that the error in D due to
a setting error of d� is

dD � d� (9.18b)

Now d� is primarily limited by how well the eye can determine when
the two images are in coincidence. This is essentially the vernier acu-
ity of the eye and is about 10 seconds of arc (0.00005 radians). If the
magnification of the rangefinder optical system is M, then d� is
0.00005/M radians, and the ranging error is

dD � ± (9.18c)

Thus, the greater the base B and the greater the magnification M, the
more accurate the value of the range D.

A few of the devices encountered in rangefinders are illustrated in
Fig. 9.14. In Fig. 9.14a the end mirrors are replaced by penta-prisms
(or “penta”-reflectors), which are constant-deviation devices, bending
the line of sight 90° regardless of their orientation. The reason for
their use is to remove a source of error, since no change in the relative
angular position of the two images is produced by misalignment of the
penta-prisms as would be the case with simple 45° mirrors. A double
telescope is built into the system to provide magnification; the power
of each branch of the telescope must be carefully matched to avoid
errors. The coincidence prism is provided to split the field of view into
two halves, with a sharply focused dividing line between. In the sys-
tem as shown, the final image is inverted; an erecting system, either
prism or lens, is frequently included. Actual coincidence prisms are
usually much more complex than that shown here.

A great variety of devices may be utilized to bring the two images
into coincidence. Those shown in Fig. 9.14b to d are located between

5 � 10�5D2

��
MB

�D2

�
B

B
�
�
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the objective and eyelens, usually in the region marked X in Fig. 9.14a.
The sliding prism of Fig. 9.14b produces a displacement at the image
plane which increases with its distance from the image; it is usually
an achromatic prism. Figure 9.14c shows two identical prisms with
variable spacing, which displace but do not deviate the rays. The rotat-
ing block in Fig. 9.14d operates on the same principle. All of the above
tend to introduce astigmatism (that is, a difference of focal position in
vertically and horizontally aligned images) since they are tilted sur-
faces in a convergent beam. The counterrotating wedges of Fig. 9.14e
can be located in parallel light (region Y in Fig. 9.14a) and thus avoid
this difficulty. Note that as one wedge turns clockwise, the other must
rotate counterclockwise through exactly the same angle; in this way
the vertical deviation is maintained at zero while the horizontal devi-
ation can be varied plus or minus twice the deviation of an individual
wedge. These are sometimes called Risley prisms.

Another device to produce a variable angle of deviation consists of a
fixed plano concave lens and a movable plano convex lens of the same
radius with their curved surfaces nested together. When the convex
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Figure 9.14 Typical rangefinder optical devices. (a) A telescopic
rangefinder with coincidence prism and penta-prism end reflectors.
(b) Sliding prism used at X to establish coincidence. (c) Pair of sliding
prisms used at X. (d) Rotating parallel plate used at X. (e) Counter-
rotating prisms used at Y to establish coincidence.



lens is located so that its plane surface is parallel to that of the con-
cave lens, the pair produces no angular deviation. However, if the con-
vex lens is rotated (about its center of curvature), the pair effectively
becomes a prism and will produce an angular deviation. This device
can be executed with spherical surfaces or with cylindrical surfaces.

Single-lens reflex (SLR) cameras often incorporate a split-image
rangefinder which is based on an entirely different principle than the
coincidence rangefinder described above. The viewfinder of an SLR cam-
era consists of the camera objective lens, a field lens, and an eyelens. The
field lens is divided into three zones as indicated in Fig. 9.15b. The out-
er zone functions as a straightforward field lens, redirecting the light at
the edge of the field so that it passes through the eyelens. It is made in
the form of a plastic Fresnel lens, in which the curved surface of a lens is
collapsed in annular zones to a thin plate, as shown in Fig. 9.15a. This
has the refracting effect of the lens without its thickness or weight. Such
Fresnel lenses are also used as condensers in overhead projectors, as well
as in spotlights and signal lamps. The center zone of the SLR field lens
is split into two halves. Each half is a wedge prism; the two prisms are
oriented in opposite directions. If the image formed by the objective lens
is in focus, it is located in the plane of the wedges and the two halves of
the image line up with each other. If the image is out of focus, the image
through one-half of the split wedge is deviated in one direction; through
the other half the deviation is in the other direction and the image is
split. The intermediate zone of the field lens has a surface comprised of
tiny pyramidal prisms which deviate and break up an out-of-focus image
so as to exaggerate the out-of-focus blurring.

For many applications the optical rangefinder has been superceded
by the laser rangefinder. This is essentially optical radar, where the
distance to the target is obtained by measuring the travel time for a
pulse of light to reflect from the target and return. In military appli-
cations a high-power laser is used; in surveying applications a cooper-
ative target such as a retrodirector (corner-cube prism) is used and a
much lower power source is adequate.

9.7 Radiometer and Detector Optics

A radiometer is a device for measuring the radiation from a source. In
a simple form, it may consist of an objective lens (or mirror) which col-
lects the radiation from the source and images it on the sensitive sur-
face of a detector capable of converting the incident radiation into an
electrical signal. A “chopper,” which may be as simple as a miniature
fan blade, is usually interposed in front of the detector to provide an
alternating signal for the benefit of the electronic circuitry which must
amplify and process the detector output.
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The radiometer is widely used for the purpose its name would seem to
imply, to measure radiation. However, it is also the basis of many other
applications. The receiver in a communications system by which one
talks over a beam of light is a sort of radiometer whose output is con-
verted into audible form. The seeker head of an infrared homing air-to-
air missile (e.g., the Sidewinder) is basically a radiometer whose output
is arranged to indicate whether the hot exhaust of an enemy jet is on or
off the line of sight.

A simple radiometer is sketched in Fig. 9.16. The detector, with a
diameter D, is located at the focus of an objective with a focal distance
F and a diameter A. The half-field of view of the system is �, and since

Basic Optical Devices 275

Figure 9.15 (a) A Fresnel lens is shown with the equivalent lens from
which it is derived. Each annular zone of the Fresnel lens has the same
surface slope as the corresponding zone of the lens. (b) The split-prism
rangefinder of a 35-mm SLR camera splits an out-of-focus image in two
by means of oppositely oriented wedge prisms in its central zone. If the
image is focused on the wedge surface, it is not deviated or split. The area
surrounding the split prism is comprised of tiny pyramidal prisms which
break up an out-of-focus image and exaggerate its blur. The outer zone is
a Fresnel lens acting as a field lens for the camera viewfinder.



the detector is at the focus of the system, it is apparent that the half-
field of view is given by

� � (9.19)

In the various applications of radiometers, the following character-
istics are frequently desirable in the optical system

1. In order to collect a large quantity of power from the source, the
diameter A of the system should be as large as possible.

2. In order to increase the signal-to-noise ratio, the size D of the detec-
tor should be as small as possible.

3. In order to cover a practical field of view, the field angle � should be
of reasonable size (and often, should be as large as possible).

The relationship between A and F is, as we have previously noted, a
limited one. If the optical system is to be aplanatic* (that is, free of
spherical aberration and coma), the second principal surface (or prin-
cipal “plane”) must be spherical; for this reason, the effective diameter
A cannot exceed twice the focal distance F, and the slope of the mar-
ginal ray at the image cannot exceed 90°. This limits the numerical
aperture of the system to NA�n′ sin 90°�n′; for systems in air with
distant sources the limiting relative aperture becomes f/0.5. There are
other limits imposed on the speed of the objective lens; the design of
the system may be incapable of whatever resolution is required at
large aperture ratios, or physical limitations (or predetermined rela-
tionships) may limit the acceptable speed of the objective.

We can introduce the effective f/# of the objective by multiplying
both sides of Eq. 9.19 by A; setting (f/#) � F/A and rearranging, to get,
for systems in air,

(f/#) � (9.20)
D

�
2A�

D
�
2F
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Figure 9.16 A simple radiometer
with an objective lens which
forms an image of the radiation
source directly on the detector
cell.

*The frequent assumption of aplanatic systems in the analysis of radiometric systems
is based (1) on the usual need for good image quality and (2) on the fact that the image
illumination (irradiance) produced by an aplanatic system cannot be exceeded, so that
the assumption provides a limiting case.



or for systems with the final image in a medium of index n′

NA � n′ sin u′ � (9.21)

Equation 9.21 can also be demonstrated by setting the optical
invariant (Eq. 2.54) at the objective (I�A�/2) equal to the invariant at
the image (I�12Dn′u′) and substituting sin u′ for u′ (in accordance with
our requirement for aplanatism).

Since the (f/#) cannot be less than 0.5 and sin u′ cannot exceed 1.0,
it is apparent that the objective aperture A, half-field angle �, and
detector size D, are related by

� � � 1.0 (9.22)

It should be noted that Eq. 9.22, since it can be derived by way of the
optical invariant with no assumptions as to the system between object
and detector, is valid for all types of optical systems, including reflect-
ing and refracting objectives with or without field lenses, immersion
lenses, light pipes, etc. It is thus quite futile to attempt a design with
the left member of Eq. 9.22 larger than unity; in fact, it is sometimes
difficult to exceed (efficiently) a value of 0.5 when good imagery is
required. This limit is applicable to any optical system, no matter how
simple or complex. Equation 9.22 is exactly analogous to Eq. 8.24 for
projection or illumination systems.

As an example of the application of Eq. 9.22, let us determine the
largest field of view possible for a radiometer with a 5-in aperture and
a 1-mm (0.04-in) detector. If the detector is in air (n′�1.0) we then
have, from Eq. 9.22,

� 1.0 or � � 0.008 radians

and the absolute maximum total field (0.016 radians) is a little less
than one degree (0.01745 radians). An immersion lens at the detector
(described below) with an index n′ would increase the maximum field
angle to 0.016n′.

An immersion lens is a means of increasing the numerical aperture
of an optical system by a factor of the index n of the immersion lens,
usually without modifying the characteristics of the system. Another
way of considering the immersion lens is to think of it as a magnifier
which enlarges the apparent size of the detector. The most frequently
utilized form of immersion lens is a hemispherical element in optical
contact with the detector. In Fig. 9.17, a concentric immersion lens of
index n′ has reduced the size of the image to h′/n′. Since the first sur-
face of the immersion lens is concentric with the axial image point,
rays directed toward this point are normal to this surface and are not

5�
�
0.04

A�
�
n′D

A�
�
D
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refracted. For this reason, neither spherical aberration nor axial coma
nor axial chromatic is introduced. The optical invariant at the image
is h′n′u′, and since u′ is not changed by the immersion lens, it is appar-
ent that as n′ increases, h′ must decrease.

In the use of immersion lenses, one must beware of reflection (espe-
cially total internal reflection) at the plane surface. Ideally, the detec-
tor layer should be deposited directly on the immersion lens. Since
immersion lenses are usually resorted to in cases where the angles of
incidence are large, total internal reflection can occur if the immersion
lens index is high and a low-index layer (air or cement, for example)
separates it from the detector.

In the application of radiometer-type systems, it is not unusual
that one wishes to use an objective of relatively low speed with a
small detector and still cover a large field of view. This is readily
accomplished by means of a field lens. The field lens is located at (or
more frequently, near) the image plane of the objective system and
redirects the rays at the edge of the field toward the detector, as
indicated in Fig. 9.18. As can be seen from a brief consideration of
the figure, the field lens actually images the clear aperture of the
objective on the surface of the detector. The optimum arrangement
is when the image of the objective aperture is the same size as the
detector and

� (�)

This arrangement not only makes a larger field angle possible, but
has the advantage of providing an even illumination over a large por-
tion of the detector surface. Most detectors vary in sensitivity from
point to point over their surface; with a field lens of focal length 
given by

f �
s1s2

�
s1 � s2

A
�
D

s1
�
s2
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Figure 9.17 A hemispherical
immersion lens concentric with
the focus of an optical system
reduces the linear size of the
image by a factor of its index.



the same area of the detector is illuminated regardless of where the
source is imaged in the field of view. Field lenses and immersion 
lenses are frequently combined. Note that the insertion of a field lens
in a radiometer does not change the limitations of Eqs. 9.21 and 9.22;
it simply permits the use of an objective system with a low numerical
aperture by raising the numerical aperture at the detector.

Another device to enlarge the field of view of a radiometer with a
small detector is the light pipe, or cone channel condenser. In Fig. 9.19,
a principal ray from the objective is shown being reflected from the
walls of a tapered light pipe. Note that without the light pipe, the ray
would completely miss the detector.

It is instructive to consider the “unfolded” path of a ray through such
a system, as indicated in Fig. 9.20. The actual reflective walls of the light
pipe are shown as solid lines; the dashed lines are the images of the walls
formed by reflection from each other. This layout is analogous to the
prism unfolding technique explained in Chap. 4 as a “tunnel diagram”
and allows us to draw the path of a ray through the system as a straight
line. Note that ray A in the figure undergoes three reflections before it
reaches the detector end of the pipe. Ray B, entering at a greater angle,
never does reach the detector, but is turned around and comes back out
the large end of the pipe. This is a limit on the effectiveness of the pipe
and is analogous to the f/# or numerical aperture limit on ordinary opti-
cal systems discussed above in the derivation of Eqs. 9.20 et seq.

A light pipe may be constructed as a hollow cone or pyramid with
reflective walls in the manner indicated in Figs. 9.19 and 9.20. It is
also common to construct them out of a solid piece of transparent opti-
cal material. The walls may then be reflective coated or one may rely
on total internal reflection if the angles are properly chosen. Note that
with a solid light pipe, total internal reflection may occur at the exit
face; this can be avoided by “immersing” the detector at the exit end of
the pipe. The use of a solid pipe effectively increases its acceptance
angle by a factor of the index n of the pipe material; the effect on the
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Figure 9.18 Radiometer with field lens to increase the
field of view with a small detector.



system is exactly analogous to the use of an immersion lens, and the
total radiometer system is still governed by Eq. 9.22 as before. Light
pipes may be used with field lenses; the most common arrangement is
to put a convex spherical surface on the entrance face of a solid pipe.

If one were to look into the large end of a pyramidal light pipe, one
would see a sort of checkerboard multiple image of the exit face (or
detector), as indicated in Fig. 9.20 for a two-dimensional case. The
checkerboard is wrapped around a sphere centered on the apex of the
pyramidal pipe. This image is, of course, the effective size of the (“mag-
nified”) detector, and the cone of light from the objective, as indicated
by rays A and A′ is spread out over this array. This effect is occasion-
ally useful in decorrelating the point-for-point relationship between
the detector surface and the objective aperture which is established
when a field lens is used. The effect is even more pronounced in a con-
ical pipe.
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Figure 9.19 The action of a
reflecting light pipe in increasing
the field of view of a radiometer.

Figure 9.20 Ray tracing through a light pipe by means of an “unfold-
ed” diagram.



The discussion in this section has been devoted to condensing radi-
ation onto a small detector. The tables can be turned. If we replace the
detector with a small source of radiation, devices such as field lenses
and light pipes can be used to increase the apparent size of the source
and to reduce the angle through which it radiates (or vice versa).

A common application of the light pipe is in illumination systems,
especially where extremely uniform illumination is required and the
source is very nonuniform, such as a high-pressure mercury or xenon
or metal halide arc lamp. If the light pipe is made with parallel sides
(either as a cylinder or with a square or rectangular cross section) as
shown in Fig. 9.21, the image of the light source can be focused on one
end of the pipe; the other end is then quite uniformly illuminated. As
can be seen from the figure, the multiple reflections of the source form
a checkerboard array of images which is effectively a new light source,
and the illumination across the exit end of the pipe is quite uniform.
Of course there is no reason that a tapered pipe cannot be used in this
way, and this is occasionally done. Note that the proportions of the
light pipe (length, diameter) and the convergence of the imaging beam
will determine the number of reflections and the number of reflected
source images.

9.8 Fiber Optics

A long, polished cylinder of glass can transmit light from one end to
the other without leakage, provided that the light strikes the walls of
the cylinder with an angle of incidence greater than the critical angle
for total internal reflection. The path of a meridional ray through such
a cylinder is shown in Fig. 9.22. The geometric optics of meridional
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Figure 9.21 A light pipe can be used to produce very uniform illumination at its exit face
when a light source is focused on the other end. The multiple images produced by reflec-
tions from the pipe walls become the illuminating source for the exit face.



rays through such a device are relatively simple. For a cylinder of
length L, the path traveled by the meridional ray has a length given
by

Path length � (9.23)

and the number of reflections undergone by the ray is

No. reflections � � tan U′±1 (9.24)

where U′ is slope of the ray inside the cylinder, d is the cylinder diam-
eter, and L its length. For the light to be transmitted without reflec-
tion loss, it is necessary that the angle I exceed the critical angle

sin Ic �

where n1 is the index of the cylinder and n2 the index of the medium
surrounding the cylinder. From this one can determine that the 
maximum external slope of a meridional ray which is to be totally
reflected is

sin U � �n1
2 ��n2

2� (9.25)

This “acceptance cone” of a cylinder is often specified as a numerical
aperture; by rearranging Eq. 9.25, we get

NA � n0 sin U ��n1
2 ��n2

2� (9.26)

This is the minimum value for the numerical aperture; as indicated
below and in Fig. 9.23, skew rays have a larger NA than do meridion-
al rays.

Again, with reference to Fig. 9.22, it is apparent that if the merid-
ional ray had entered the cylinder well above or well below the axis, it
would have emerged with a slope angle of �U. The path of a pair of
skew rays is indicated (in an end-on view) in Fig. 9.23. Note that 
a skew ray is rotated with each reflection and that the amount of 

1
�
n0

n2
�
n1

L
�
d

path length
��

(d/sin U′)

L
�
cos U′
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Figure 9.22 Light is transmitted
through a long polished cylin-
der by means of total internal 
reflection.



rotation depends on the distance of the ray from the meridional plane.
Thus, a bundle of parallel rays incident on one end of a cylinder will
emerge from the other end as a hollow cone of rays with an apex angle
of 2U. If the diameter of the cylinder is small, diffraction effects may
diffuse the hollow cone to a great extent. It is also worth noting that
since the skew rays strike the surface of the cylinder at a greater angle
of incidence than the meridional rays, the numerical aperture for skew
rays is larger than that for meridional rays.

If the light-transmitting cylinder is bent into a moderate curve, a
certain amount of light will leak out the sides of the cylinder. However,
the major portion of the light is still trapped inside the cylinder, and a
simple curved rod is occasionally a convenient device to pipe light from
one location to another.

Optical fibers are extremely thin filaments of glass or plastic.
Typical diameters for the fibers range from 1 to 2 �m to 25 �m or more.
At these small diameters, glass is quite flexible, and a bundle of opti-
cal fibers constitutes a flexible light pipe. Figure 9.24 shows a few of
the applications of fiber optics. Figure 9.24a indicates the basic prop-
erty of an oriented, or “coherent,” bundle of fibers in transmitting an
image from one end of the fiber to the other. If the bundle is con-
strained at both ends so that each fiber occupies the same relative
position at each end, then the fiber rope may literally be tied in knots
without affecting its image-transmitting properties. Fiber bundles
with lengths of many feet are obtainable with surprisingly high trans-
missions. The limiting resolution (in line pairs per unit length) of a
coherent fiber bundle is approximately equal to half the reciprocal of
the fiber diameter; by synchronously oscillating or scanning both ends
of the fiber, this resolution can be doubled. When the fibers are tight-
ly packed, their surfaces contact each other and leakage of light from
one fiber to the next will occur. Moisture, oil, or dirt on the fiber sur-
face can also interfere with total internal reflection. This is prevented
by coating or “cladding” each fiber with a thin layer of lower-index

Basic Optical Devices 283

Figure 9.23 The path of skew
(nonmeridional) rays through a
reflecting cylinder is a sort of
helix. The amount of rotation a
ray undergoes in traversing a
given length depends on its
entrance position.



glass or plastic. For example, the core glass may have n1�1.72 and the
cladding n2�1.52, yielding a numerical aperture according to Eq. 9.26
of the order of 0.8. Since the total internal reflection (TIR) occurs at
the core-cladding interface, moisture or contact between the outer sur-
faces does not frustrate the TIR if the cladding is thick enough.

Figure 9.24b shows a flexible gastroscope or sigmoidoscope. An
objective lens forms an image of the object on one end of a coherent
fiber bundle; at the other end the transmitted image is viewed with the
aid of an eyepiece or video camera.

284 Chapter Nine

Figure 9.24 Fiber optics.



Ordinary photography of a cathode ray tube face is an inefficient
process. The phosphor radiates in all directions and a camera lens
intercepts only a small portion of the radiated light. A tube face com-
posed of a hermetically fused fiber array (Fig. 9.24c) can transmit all
the energy radiated into a cone defined by its NA to a contacted pho-
tographic film with negligible loss. Fused fibers are always clad with
low-index glass to separate the fibers; frequently an absorbing layer or
absorbing fibers are added to prevent contrast reduction by stray light
which is emitted at angles larger than the numerical aperture of the
fibers. Fiber optics are also available as optical conduit, that is, rigid
fused bundles, for efficient transmission of light through labyrinthian
paths, as shown in Fig. 9.24d.

Flexible plastic fibers with diameters on the order of 0.5 in are used
as single fibers in illumination systems.

A tapered, coherent, fused-fiber bundle can be used as either a mag-
nifier or minifier (depending on whether the original object is placed
at the small or large end of the taper). By twisting a coherent bundle
of fibers, either fused or not, an image erector can be made which will
carry out the function of the erector prisms described in Chap. 4. These
are often found in image-intensifier systems such as those used in
night vision goggles.

Hollow glass fibers in diameters from 0.5 to 1.0 mm, internally coat-
ed, are moderately flexible and have been used to transmit radiation
in the 10-�m wavelength region. These fibers do a reasonable job of
maintaining the gaussian distribution of the laser light.

Gradient index fibers

The preceding descriptions have dealt with fibers whose principal
function was to transmit power from one end to the other, with little
or no concern for any coherence; energy incident on one end of the fiber
is effectively homogenized or scrambled and transmitted to the other
end. But if the index of the fiber is made high in the center, gradually
changing to low at the outside, then the ray paths through the fiber
will be curved rather than straight lines. If the index gradient is prop-
erly chosen (i.e., approximately a function of the reciprocal of the
square of the radial distance from the center of the fiber), the ray
paths are sinusoidal as shown in Fig. 9.25. This has two significant
effects. Rays originating from a point are brought to a focus periodi-
cally along the fiber; thus the fiber is capable of forming an image just
as a lens is. This is the basis of the GRIN or SELFOC rod. For exam-
ple, if the index is given as a function of the radial distance r as

n (r) � n0 (1 � kr2/2)
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then the focal length of a rod with an axial length of t is

ef l �

and the back focus is

bf l �

The “pitch” of the sinusoidal ray path is 2�/�k�.
Since the focusing effect is continuous along the length of the rod,

such a device is the equivalent of the periscope system of relay and
field lenses described in Sec. 9.2. A length of rod corresponding to two
relay lenses and one intermediate field lens as shown in Fig. 9.25 will
thus produce an erect image of an area approximately equal to the rod
diameter. A row, or a double row, of such rods is the basis of compact
table top (scanning) copy machines. Obviously, a long GRIN rod can
function as an endoscope and a short rod (less than a quarter of the
length shown in Fig. 9.25) will function like an ordinary lens. This lat-
ter is called a Wood lens.

The other significant aspect of such an index gradient is that
because the light rays travel in sinusoidal paths, they never reach the
walls of the fiber and do not depend on reflection at a low-index
cladding layer to confine them to the fiber. Also, the optical path (index
times distance) is the same for all paths; obviously the axial path is the
shortest, but it is at the highest index. This constancy of optical path
means that the travel time is the same for all paths over the full
numerical aperture; contrast this with the path length given by Eq.
9.23, which varies with the cosine of the ray slope angle.

Fibers for communications

Another application for optical fibers is in communication. Using light
as an extremely high frequency carrier wave, the data transmission

1
��
n0 �k� tan (t �k� )

1
��
n0 �k� sin (t �k�)
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Figure 9.25 In a gradient index rod or fiber (GRIN or SELFOC
rod), light rays travel in sinusoidal paths because the index is
high at the center of the rod and lower at the edge. Such a rod can
form an image just as a lens does. The rod length shown is the
equivalent of two relay lenses and an intermediate-field lens. A
short length of rod will act like a single lens element, and a longer
length can act like a periscope.



rate can be very, very high. Fibers can be made with extremely low
absorption (less than 0.1-dB loss per kilometer) so that transmission
of information over distances of several miles becomes practical.
However, if the lengths of the possible ray paths differ from each oth-
er, the elapsed time for light to travel from one end of the fiber to the
other will vary from ray to ray. At high data rates, only a small amount
of travel time difference is enough to introduce a phase shift sufficient
to reduce the signal modulation to a useless level. Again, Eq. 9.23 indi-
cates the path length variation involved. The fibers used for telephone
and data transmission are typically single-mode fibers (with core
diameters on the order of 10 �m) which will not support propagation
of a light wave except directly down the length of the fiber. In addition
to the variation of path length, another source of trouble results from
the fact that in most materials the index varies with wavelength, and
thus, even with a constant path length, the optical path would vary
with wavelength. Communication fiber materials, in addition to low
absorption, are characterized by a very low dispersion in the (narrow)
region of the spectrum in which they are used. Silica (SiO2) fibers are
made with near zero dispersion at 1.3 �m wavelength and very low
absorption at 1.55 �m. Multilayer cladding can shift the zero disper-
sion to 1.55 �m and flatten it, to make 1.3 to 1.6 �m useful.

9.9 Anamorphic Systems

An anamorphic optical system is one which has a different power or
magnification in one principal meridian than in the other. Such
devices usually make use of either cylinder lenses or prisms. With ref-
erence to Fig. 9.26c, consider the fan of rays shown in the figure. The
left-hand cylindrically surfaced lens is the equivalent of a plane paral-
lel plate for these rays. However, the right-hand lens refracts these
rays just as a spherical lens would, because its cylinder axes are at 90°
to the left lens. The magnification of this fan of rays is about �0.5� as
drawn. If we consider a fan of rays in the other prime meridian, how-
ever, the situation is reversed; the lens effect occurs at the left lens and
the magnification is about �2.0�. Thus the square object figure is
imaged as a rectangle four times as wide as it is high. Since the focus-
ing effect of a cylinder varies as the square of the cosine of the angle
that a ray fan makes to its power meridian, if both prime meridians
are in focus, then all meridians are in focus.

Another typical anamorphic system consists of an ordinary spheri-
cal objective lens combined with a Galilean telescope composed of
cylinder lenses, as indicated in Fig. 9.26. In the upper sketch (a), it is
apparent that the cylindrical afocal combination serves to shorten the
focal length of the prime lens and thus widen its field of view (for a giv-
en film size). In the other meridian (Fig. 9.26b), the cylinder lenses are
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equivalent to plane parallel plates of glass and do not affect the focal
length or coverage of the prime lens. Thus, the system has a focal
length equal to that of the prime lens fp in one direction and a focal
length equal to the magnification of the attachment times the prime
lens focal length Mfp in the other. In Fig. 9.26 the system is shown as
a reversed Galilean telescope with a magnification of less than unity,
and Mfp is less than fp. This is the type of system used in many wide-
screen motion picture processes. The wide angular field is used to com-
press a large horizontal field of view into a normal film format. The
distorted picture which results is expanded to normal proportions by
projecting the film through a projection lens equipped with a similar
attachment. Note that these attachments are used with ordinary cam-
era and projector equipment.

Note that because an anamorphic system has a different equivalent
focal length in each meridian, if it is to be focused at a finite distance,
it will require a different shift of the lens to focus in each meridian.
Thus the prime (spherical) lens must be focused separately from the
cylindrical attachment (which is then focused by changing the space
between the two components). This type of focusing has the unfortu-
nate effect of changing the anamorphic ratio in a way which makes the
face in a close-up appear fatter than it actually is. This is not a popu-
lar effect among the acting profession. There are two alternatives to
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Figure 9.26 Cylindrical anamorphic systems.



this. One is to put a focusing component in front of the system. This is
usually a pair of weak spherical elements, one positive and one nega-
tive, so that when closely spaced their power is zero; as the spacing
between them is increased, their power becomes positive and the sys-
tem is focused on a close distance. This is, in effect, a collimator for the
object. The other alternative is called a Stokes lens, which consists of
a pair of weak cylinders of equal but opposite powers, placed between
the two components of the afocal cylindrical attachment, with their
axes tilted at 45° to the axes of the attachment. When the two Stokes
cylinders are counterrotated, both meridians of the system are focused
at the tame time.

A Bravais system is the finite conjugate analog of an afocal power
changer. Figure 9.27 shows the principle of a Bravais system inserted
into the image space of an optical system for the purpose of increasing
the size of the image without changing the image location. The com-
ponent powers of this type of system can be determined from Eqs. 2.49
and 2.50 by setting the object to image distance T (the “track length”)
equal to zero. (Note that the arrangement shown here is usually much
more satisfactory than that with the component powers reversed,
which reduces the image size.) If a Bravais system is made with cylin-
drical optics, the image can be enlarged in one meridian and not in the
other. This is of course an anamorphic system and has been success-
fully used for motion picture work. The value of such a “rear” anamor-
phic attachment is that its size is much less than that of the
equivalent afocal attachment placed in front of the lens; this feature is
especially important for use with long-focus zoom lenses, where the
necessary size for a “front” anamorph can be overwhelming. In addi-
tion, there is no focus problem and no “fat” problem.

Cylinder lenses are also used to produce line images where a narrow
slit of light is required. The image of a small light source formed by a
cylinder lens is a line of light parallel to the axes of the cylindrical sur-
faces of the lens. The width of the line is equal to the image height 
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Figure 9.27 Bravais system.



given by the first-order optical equations; the length of the line is lim-
ited by the length of the lens, or as shown in Fig. 9.26c, it may be con-
trolled by another cylindrical lens oriented at 90° to the first.

A prism may also be used to produce an anamorphic effect. In Sec.
9.1 (Eqs. 9.5 and 9.6), we saw that the magnification of an afocal opti-
cal system was given by the ratio of the diameters of its entrance and
exit pupils. A refracting prism, used at other than minimum deviation,
has different-sized exit and entrance beams and thus produces a mag-
nification in the meridian in which it produces a deviation. Thus a sin-
gle prism may be used as an anamorphic system. To eliminate the
angular deviation, two prisms, arranged so that their deviations can-
cel and their magnifications combine, are usually used. Figure 9.28
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Figure 9.28 The anamorphic action of refracting prisms.



illustrates the action of a single prism and also shows a compound
anamorphic attachment made up of two prisms. Since the anamorphic
“magnification” of a prism is a function of the angle at which the beam
enters the prism, a variable-power anamorphic can be made by simul-
taneously rotating both prisms in such a way that their deviations
always cancel. Prism anamorphic systems are “in focus” and free of
axial astigmatism only when used in parallel (collimated) light. Unlike
cylindrical systems, they cannot be focused by changing the space
between elements. For this reason, prism anamorphics are frequently
preceded by a focusable pair of spherical elements which collimate the
light from the object.

For use in systems which are not monochromatic, the prisms must
be achromatized (as discussed in Sec. 4.5). Prism anamorphs have
been used to project wide-screen (anamorphosed) movies; in this appli-
cation, each achromatic prism component typically consisted of two or
three prism elements. The useful field of such a device is rather small;
being completely unsymmetric, it has all (both odd and even) orders 
of aberrations, including some unusual kinds of lateral color and
distortion.

A laser diode is a useful light source, but it has two properties which
ordinarily are a handicap: The output beam is not circular in cross sec-
tion, but elliptical, and the source itself has a small but significant
amount of astigmatism so that instead of appearing as a simple point,
it appears as a point in different longitudinal locations for each merid-
ian. The lower sketch in Fig. 9.28 shows a laser diode collimator, con-
sisting of an aspheric surfaced collimator singlet, a weak cylindrical
lens to cancel out the source astigmatism, and an anamorphic prism
pair to convert the elliptical beam to one with a circular cross section.
Note that the nearly monochromatic character of the output radiation
makes achromatism unnecessary.

9.10 Variable-Power (Zoom) Systems

The simplest variable-power system is a lens working at unit power. If
the lens is shifted toward the object, the image will become larger and
will move further from the object. If the lens is moved away from the
object, the image will become smaller and will again move away from
the object. Thus one may find any number of conjugate pairs for which
the object-to-image distance is the same but which have magnifica-
tions which are reciprocals of each other.

Figure 9.29 indicates the relationships involved in this arrange-
ment. The algebraic expressions shown can be derived readily by
manipulation of the thin-lens equation (Eq. 2.4).
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The applicability of this particular zoom system is limited, since
the commercial demand for variable-power systems at unit magnifi-
cation is quite modest. However, by combining the moving element
with one or two additional elements (usually of opposite sign), the
zoom system can be made to operate at any desired set of conjugates.
Several such arrangements are shown in Fig. 9.30. Note that in each
system the moving lens passes through a point at which it works at
unit magnification. By adding either a positive or negative eyelens or
by simply adjusting the power of the last lens of the system, as indi-
cated in the lower sketch, a telescope or afocal attachment may be
made.

A system which is in focus only at two different magnifications is
called a bang-bang zoom. It can be quite useful if what is wanted is a
system with just two magnifications (and a continuous “zooming”
action is not necessary). Since a bang-bang system is much easier and
cheaper to design and build than a continuously in-focus zoom, it is
often well worth considering whether a true zoom is really needed in a
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Figure 9.29 The basic unit power zoom lens. The graph indicates
the shift of the image as the lens is moved to change the magni-
fication.



given application, or whether a simple choice of two magnifications,
focal lengths, or powers would be sufficient.

All variable-power systems with a single moving component have
the same characteristic relationship between image shift and magnifi-
cation (or focal length). Thus for an uncompensated “single-lens” zoom
system, there can be at most two magnifications at which the image is
in exact focus. At all other powers, the image will be defocused. This
situation can be alleviated in two ways. A “mechanically compensated”
zoom system is one in which the defocusing is eliminated by introduc-
ing a compensating shift of one of the other elements of the system, as
exemplified by Fig. 9.31. Since the motion of the compensating ele-
ment is nonlinear, it is usually effected by a cam arrangement, hence
the name “mechanically compensated.”

In a zoom system, the motion of the elements will, of course, cause
the ray heights, angles, etc. to change. It is apparent that the chro-
matic contributions of a single element (which are proportional to
y2�/V and yyp�/V for axial and lateral chromatic, respectively) will
vary accordingly. Thus, in order to achieve a fully achromatic system
through the zoom, each component must be individually achromatized.
However, since a small amount of chromatic often can be tolerated,
singlet components are not uncommon.

The formulas for a thin-lens layout of this type of system are shown
in Fig. 9.31 and can be derived by manipulation of the first-order
expressions of Chap. 2. To use the formulas, one may arbitrarily select
a value for �A, the power of the first element, then determine �B, �C,
and the spacings for the “minimum shift” setting. To find the spacings
for other positions of the moving lens, choose a value for one space and
solve for the position of the compensating element to maintain the
final focus at the same distance from the fixed element.

Basic Optical Devices 293

Figure 9.30 Zoom systems based
on the unit power principle.



It should be apparent that despite the use of three components in
the preceding discussion, only two components are necessary to make
a mechanically compensated zoom lens. Given any two components, if
we change the space between them, Eqs. 2.44 and 2.45 indicate that
the effective focal length will be changed. Of course, the back focal
length will also change (according to Eq. 2.46), and the entire system
will have to be shifted to maintain the focus. It usually turns out to be
advantageous if one component is positive and the other negative.
There are thus two possible arrangements, depending on which power
comes first, and one’s choice can be based on size and focal-length con-
siderations. Many of the newer 35-mm camera zoom lenses are of 
this type.

Many of the newer zoom lens designs have more than two moving
components. The extra motion may be used to improve the image qual-
ity through the zoom or to stabilize the image quality when the lens is
focused at a near distance.
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Figure 9.31 Mechanically compensated zoom system. 
Given: �, power (1/efl) of a system at “minimum shift”

M, ratio of power at S1�0 to power at S1�(R � 1)/R�A

R � �M�
Choose: �A, power of the first element. May be an arbitrary choice, or set

�A � (R � 1)/R(S1 � S2) to control the length, (S1 � S2), at “minimum shift”
Then: �B � ��A(R � 1) � (1 � M)/R(S1 � S2)

�C � (�A � �)R(R � 1)/(3R � 1) to get � at the “minimum shift” position
“minimum shift” occurs at
S1 � (R � 1)/�A(R � 1) � RS2 � R(S1 � S2)/(1 � R)
S2 � (R � 1)/�AR(R � 1) � S1/R � (S1 � S2)/(1 � R)
l′ � (3R � 1)/�R(R � 1)

S1 � S2 � l′ � �

Motion of lens C is computed to hold the distance from lens A to the focal point at a con-
stant value as lens B is moved.

(3R � 1)
��
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The other technique for reducing the focus shift in a variable-power
system is called optical compensation. If two (or more) alternate lenses
are linked and moved together with respect to the lenses between them,
the powers and spaces can be so chosen that there are more than two
magnifications at which the image is in exact focus. Two systems of this
type are shown in Fig. 9.32. In the upper sketch, the first and third ele-
ments are linked and move to produce the varifocal effect. The second
element, the other elements, and the film plane are all held in a fixed
relationship with each other. The image motion produced by this type of
system is a cubic curve, as shown in the upper graph. It is thus possible
to arrange the powers and spaces so that the image is in exact focus for
three positions in the zoom. The defocusing between these points is
greatly reduced in comparison with the simpler systems described
above, and if the range of powers is modest and the focal length of the
system is short, a nonlinear compensating motion of one of the elements
is not necessary. In the second system of Fig. 9.32, the motion of the
image is described by a still-higher-order curve, and four points of exact
compensation are possible; the residual image shift is about one-twenti-
eth of the shift of the upper system. It turns out that the maximum
number of points of exact compensation is equal to the number of vari-
able airspaces. (Note that in Fig. 9.30 this number is 2, and the image
motion is parabolic with two possible points of compensation.)

Originally it was thought that the fabrication of a mechanically com-
pensated zoom lens would be almost impossibly difficult, requiring an
unattainable level of precision, which could not be maintained as the
cams, etc., wore with use. This turned out to be an incorrect assump-
tion, and mechanically compensated zoom systems are widely used 
for almost all applications. Optical compensation is rare for several 
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Figure 9.32 Optically compensated zoom systems. The upper system
has three “active” components and three points of compensation as
indicated in the upper graph. The lower system has four “active” com-
ponents and four compensation points.



reasons. The requirements of the power and space layout to achieve
optical compensation are extremely stringent and restrict the lens
designer’s ability to maintain the correction of the lens system
throughout the zoom range. In addition, the size of the optically com-
pensated system is significantly larger than the equivalent mechani-
cally compensated system. Despite the fact that the optically
compensated lens with its simple and undemanding mechanics is less
expensive to fabricate, provided size is not a problem, the optically
compensated zoom is effectively obsolete.

In zoom systems the focal lengths of a stationary first element and
of the elements following the last moving lens may be changed at
will, provided the relationship between the focal points of the ele-
ments is maintained. Such changes modify the focal length (or pow-
er) of the overall system and, in the case of the following elements,
the amount of image shift as well. However, since a change in object
position will shift the focus point of the first element with respect to
the other elements, a zoom system is sensitive to object position. In
order to maintain precise compensation, most zoom lenses are
focused by moving an element of the first component with respect to
the rest to offset this effect. As with the anamorphic systems dis-
cussed in Sec. 9.9, the leading component serves to collimate the
light from the object.

9.11 The Diffractive Surface

The diffractive surface (or “kinoform” or “binary surface”) as used in
imaging optics is discussed at some length in connection with the
design of telescope objectives in Chap. 12. In this section we are con-
cerned not with the kinoform’s Fresnel surface modulo 2� but with
those surfaces which operate on the basis of diffraction in order to
introduce a controlled diffusion or to produce a message or a pattern
from a simple laser beam. Often these surfaces are simple two-, 
four-, or eight-level patterns with randomized surface elevations.
These devices are made feasible by the recent advances in fabrication
technology which make it possible to produce the microscopic wave-
length-sized surface details required to produce these effects.

To those who think in terms of the phasefront or wavefront, the form
of such a device is derived by describing the phasefront which will pro-
duce the desired effect and then determining the surface contour
which will impose this phasefront on the input beam. However, for
those who think geometrically, this is a less than satisfying explana-
tion of how such a surface functions. The following are not elegant
depictions, but they do serve the purpose of taking some of the mys-
tery out of such devices.
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The diffusing surface can be visualized as a surface randomly cov-
ered with microscopic lenses of a scale on the order of several wave-
lengths, either concave or convex, whose ratio of diameter to focal
length equals the diffusion angle. Such diffusers are commercially
available in diffusions of 12°, 1°, etc. They can be useful in a number
of applications, such as where one desires to destroy the spatial coher-
ence in a laser system in order to eliminate interference patterns. The
surface lens concept is not necessary; the same result can be produced
by a stepped surface which locally alters the phase of the wavefront.

The pattern-generating surface is a little more difficult. Visualize a
surface covered with weak prisms, each of which directs its portion of
the incoming laser beam in a direction which will form a specific part
of the desired pattern. When such a surface is produced on a micro-
scopic wavelength scale, there are many, many tiny prisms in the area
covered by the beam, and when the beam is translated across the sur-
face, there are always enough prisms within the beam to produce the
pattern. The bigger the beam diameter, the more prisms will be
involved, and the better the definition of the pattern will be. There is
an inherent “speckle” produced in this process which shows up as a
random pattern of dots in the final image. Again, the effect can be pro-
duced by stepped surfaces which alter the wavefront diffractively to
produce the desired patterns.
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Exercises

1 (a) What focal lenghts are required for the eyelens and objective of a 20 �
astronomical telescope which is 10 in long? (b) What is the eye relief? (c) What
is the minimum objective diameter if the diffraction limit of resolution is to
match the resolution of the eye? (d) What is the maximum real field of the tele-
scope if the diameter of the eye lens is 0.5 in?

ANSWER: (a) 10 in/21; 200 in/21 (b) 12 in (c) 1.83 in (d) ±0.0296 radians

2 It is desired to add an afocal attachment in front of a 10-in f/10 camera lens
to convert it to a 5-in focal length. (a) What element powers are necessary for
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a 3-in length reverse Galilean telescope to accomplish this? (b) What diameter
must the outer element have if vignetting is not to exceed 50 percent for an
object field of ±60°? Sketch the system. Is this a reasonable diameter?

ANSWER: (a) f0 � �3 in; fe � �6 in (b) 312 in

3 A microscope is required to work at a distance of 3 in from the object to the
objective. If the objective and eyepiece both have 2-in focal lengths, what is the
length of the microscope and what is its power?

ANSWER: Length�8 in; power�10�

4 What is the magnification produced by a telescope made up of a 5-in focal
length objective and a 5-in focal length eyepiece (and thus nominally of unit
power) when it is set at minus 2 diopters (i.e., the image of an infinitely dis-
tant object is �20 in from the eyelens)?

ANSWER: �1.25� (with eye at eyelens) or �0.8� (with eye at exit pupil)

5 What base length must a rangefinder have to measure a range of 2000 m
to an accuracy of ±0.5 percent if it incorporates a 20-power telescope?

ANSWER: 1 m

6 Determine the focal length, diameter, and position (relative to the detector)
for a radiometer field lens. The objective is a 5-in diameter f/4 paraboloid and
the detector is 0.2-in square. The field to be covered is ±0.02 radians.

ANSWER: f � 0.77 in; diameter � 0.8 in minimum; s2 � 0.8 in

7 The entrance opening of a tapered hollow light pipe is twice the exit open-
ing. What is the largest angle a ray through the center of the entrance open-
ing can make with the axis and still emerge from the small end of the pipe?

ANSWER: 30° (for a long pipe) and �90° (for a short pipe)

8 A hemicylindrical rod (plano-convex) with a cylindrical radius of 2.5 mm,
which is 20 mm long, is located 50 mm from a 1-mm-square source of light. At
the “focus,” what is the size of the illuminated area? (Assume the rod index is 1.5)

ANSWER: 0.111 mm � 22.222 mm

9 Determine the element powers and spacings for a zoom lens of 10-in vertex
length (s1�s2�10 in) with a zoom ratio of 4 which is to have a 10-in focal
length at the “minimum shift” position. Plot the compensating motion of ele-
ment C against the focal length of the lens as the element B is moved. Use Fig.
9.31.

ANSWER: M�4; powers: �0.05, �0.15, �0.18; spacings: 6.67 in, 3.33 in back
focus: 8.33 in

M�14; powers: �0.1, �0.15, 0; spacings: 3.33 in, 6.67 in; back focus:
6.67 in
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Optical Computation

10.1 Introduction

The analysis of an optical system requires a great deal of numerical
computation, devoted, for the most part, to the determination of the
exact paths taken by light rays as they pass through the system. As
previously mentioned, a ray may be traced by the application of Snell’s
law at each surface. There have been a great variety of formulations
devised for raytracing. Early formulas were designed for use with log-
arithms, and then formulas which were optimized for use with mechan-
ical desk calculators were widely used (the trigonometric equations in
Chap. 2 are of this type). Today the most widely used tool for raytrac-
ing is the electronic computer, and the equations presented in this
chapter are designed for this usage, although they can of course be used
with a desk or electronic calculator. These equations do not require that
a special computation be carried out for long radii or plane surfaces.
They are further characterized by the fact that the quantities involved
in them are “bounded,” i.e., the maximum size of each term of an equa-
tion is readily predicted in terms of the size of the optical system.

The latter sections of the chapter will present detailed directions for
computing the numerical values of the aberrations discussed in Chap. 3
and also equations for determining the third-order aberration contri-
butions of surfaces and of thin lenses.

The precision required of an optical calculation is at least six places,
obviously depending on the scale of the optical system and the applica-
tion to which it is put. Trigonometric functions should be carried to at
least six places after the decimal; this corresponds to an error of about
one-fifth second of arc and is adequate for all but very demanding
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applications. For moderate-sized systems, linear dimensions are car-
ried to five- or six-figure accuracy. Very large diffraction-limited sys-
tems will, of course, require greater precision throughout. For most
calculations, the modern computer (or PC) in single-precision mode is
adequate. Double precision is usually used for diffraction and optical
path-length calculations.

The time required for an optical computation will obviously depend
on the technique and equipment utilized. Tracing a meridional ray (or
computing the third-order aberration) through a single surface on a
desk calculator is a matter of a minute or so for an experienced opera-
tor with a well-thought-out scheme of computation. A skew raytrace is
about an order of magnitude more time consuming. The time required
on an electronic computer is a matter of fractions of a second on older
machines and microseconds on the more powerful machines.

The task presented by raytracing is this: given an optical system
defined by its radii, thicknesses, and indices, and a ray defined by its
direction and its spatial location, to find the direction and spatial loca-
tion of the ray after it passes through the system.

Each set of raytracing equations will be presented in four opera-
tional sections. First, the “opening” equations, which start the ray into
the system; second, the “refraction” equations, which determine the
ray direction after passing through a surface; third, the “transfer”
equations, which carry the computation to the next surface; and
fourth, the “closing” equations, which permit the determination of the
final intercept length or height. The refraction and transfer equations
are used iteratively, i.e., they are repeated for each surface of the sys-
tem. The opening and closing equations are used only at the start and
finish of the computation. The reader may note that the coordinate
system has been changed from that used in the first and second edi-
tions of this book, wherein the optical axis was the x axis. The optical
axis in this edition is the z axis.

10.2 Paraxial Rays

Although the paraxial raytracing equations were presented in Chap.
2, they are repeated here (in slightly modified form) for completeness.

Opening: 1. Given y and u at the first surface

or 2. y � �lu (10.1a)

or 3. y � h�su (10.1b)

Refraction:

u′ � � (10.1c)
�cy(n′�n)
��

n′
nu
�
n′
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Transfer to the next surface:

yj � 1 � yj � tu′j (10.1d)

uj � 1 � u′j (10.1e)

Closing:

l′k � (10.1f)

or

h′ � yk � s′ku′k (10.1g)

The symbols have the following meanings:

y the height at which the ray strikes the surface; positive above the
axis, negative below.

u the slope of the ray before refraction.

u′ the slope of the ray after refraction; ray slopes are positive if the
ray must be moved clockwise to reach the axis.

h the height in the object plane at which the ray originates; sign
convention same as y.

h′ the height at which the ray intersects the image plane.

l the distance from the first surface of the system to the axial inter-
cept of the ray; negative if intercept point is to the left of the sur-
face.

l′ the distance from the last surface to the final axial intercept of the
ray; positive if the intercept is to the right of the last surface.

s the distance from the first surface to the object plane; negative if
the object plane is to the left of the surface.

s′ the distance from the last surface to the image plane; positive if
the image plane is to the right of the surface.

c the curvature (reciprocal radius) of the surface, equal to 1/R; pos-
itive if the center of curvature is to the right of the surface.

n the index of refraction preceding the surface.

n′ the index of refraction following the surface.

t the vertex spacing between surfaces j and j�1, positive if surface
j�1 is to the right of surface j.

n and n′ are positive when the ray travels from left to right, negative when
the ray travels from right to left (as it does following a single
reflection).

k subscript indicating the last surface of the system.

The physical meanings of the symbols are indicated in Fig. 10.1.

�yk
�
u′k
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10.3 Meridional Rays

Meridional rays are those rays which are coplanar with the optical
axis of the system. The plane in which both ray and axis lie is called
the meridional plane, and, in an axially symmetrical system, a
meridional ray remains in this plane as it passes through the sys-
tem. The two-dimensional nature of the meridional ray makes it
relatively easy to trace. Although a great amount of information
about an optical system can be obtained by tracing a few meridion-
al rays plus a Coddington trace or two (Sec. 10.6), given the speed
of the modern computer, meridional rays are usually traced as a
special case of a skew or general raytrace. However, if rays are to
be traced with an electronic pocket calculator, then meridional rays
are the obvious choice. The formulas in this section are designed 
to take advantage of the trigonometric capabilities of this type of
calculator.

Opening: 1. Given Q and sin U at the first surface.
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or 2. Q � �L sin U (10.2a)

or 3. Q � H cos U � s sin U (10.2b)

Refraction:

sin I � Qc � sin U (10.2c)

sin I′ � (10.2d)

U′ � U�I � I′ (10.2e)

Q′ � (10.2f)

Transfer:

Qj � 1 � Q′j � t sin U′j (10.2g)

Uj � 1 � U′j (10.2h)

Closing:

L′k � (10.2i)

or

H′ � (10.2j)

Miscellaneous:

y � � � (10.2k)

z � � (10.2l)

D1 to 2 � (10.2m)

The symbols used are, for the most part, the same as those defined
in Sec. 10.2, capitalized to differentiate them from the lowercase
paraxial symbols. Symbols new to this section are

Q the distance from the vertex of the surface to the incident ray, per-
pendicular to the ray; positive if upward.

Q′ the distance from the surface vertex to the refracted ray, perpendicu-
lar to the ray.

I the angle of incidence at the surface; positive if the ray must be rotat-
ed clockwise to reach the surface normal (i.e., the radius).

t � z1 � z2
��

cos U ′1

1�cos (I�U)
��

c
Q sin (I�U)
��
(cos U � cos I)

sin (I�U)
��

c
Q′[1 � cos (I�U)]
���

(cos U′ � cos I′)
Q [1 � cos (I�U) ]
���

(cos U � cos I)

Q′k � s′k sin U′k
��

cos U′k

�Q′k
�
sin U′k

Q (cos U′ � cos I′)
���

(cos U � cos I)

n sin I
�

n′



I′ the angle of refraction.

z the longitudinal coordinate (abscissa) of the intersection of the ray
with the surface; positive if the intersection is to the right of the ver-
tex.

D1 to 2 the distance along the ray between surface 1 and surface 2.

The physical meanings of the symbols are indicated in Fig. 10.2.

Example A

As a numerical example, we will trace a paraxial and a meridional ray
through the marginal zone of an equiconvex lens with radii of 50 mm,
a thickness of 15 mm, and an index of 1.50. We will trace rays origi-
nating at an axial point 200 mm to the left of the first surface and
determine the axial intersections for both rays after passing through
the lens. We will also determine the height at which the marginal
(meridional) ray intersects the paraxial focal plane. Assuming the lens
to have an aperture of 40 mm, we will use a value of �0.1 for both the
paraxial u and the meridional sin U, so that the ray passes through
the lens about 20 mm from the axis.

The following tabulation indicates both the calculation and a conve-
nient way of arranging the raytrace data.

Graphical raytracing (see Fig. 10.3). Meridional rays can be traced using
only a scale, straightedge, and compass. The ray is drawn to the sur-
face, and the normal to the surface is erected at the ray-surface inter-
section. Two circles are drawn about the point of intersection with
their radii proportional to n and n′, the refractive indices before and
after the surface, respectively. From the intersection of the ray with
circle n at point A, a line is drawn parallel with the normal until it
intersects circle n′ at point B. The refracted ray is then drawn through
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Example A—Raytrace Data

R �50.0 �50.0
c � 1/R �0.020 �0.020
t 15.0
n 1.00 1.50 1.00

Paraxial Calculation
given: u1 � �0.1

l1 � �200.0
y1 � �20.0 (by 10.1a)

y by 10.1d �20.0 �19.0
u by 10.1c �0.1 �0.066667 �0.29
l′ by 10.1f �65.517241
Meridional Calculation

given: sin U1 � �0.1
L1 � �200.0
Q1 � �20.0 (by 

10.2a)
Q by 10.2g �20.0 �19.589064
sin l by 10.2c �0.5 �0.475278
sin I′ by 10.2d �0.333333 �0.712918
sin U′ �0.1 �0.083497 �0.372744
cos U′ 0.9949874 �0.996508 �0.927934
Q′ by 10.2f �20.841522 17.008692
L′ by 10.2i
H′ (s′�l′) by 10.2j �45.631041

�7.988131

Figure 10.3 Graphical raytrace.



point B and the ray-surface intersection. (For reflection, n′ � �n, and
a single circle is drawn. Point B is located at the intersection of the
parallel and the index circle on the opposite side of the surface.

If desired, the index circle construction can be carried out off to one
side of the drawing (to avoid cluttering the diagram) and the angles
transferred to the drawing. An alternative is to measure the angle of
incidence and compute the angle of refraction using Snell’s law (n sin
I � n′ sin I′). The accuracy of graphical raytracing is poor and the
process is laborious. Thus, it is rarely used except for crude condenser-
type design. It is usually preferable to use a computer and draw the
rays from the computed data, or, better yet, to have the computer draw
the whole thing.

10.4 General, or Skew, Rays: 
Spherical Surfaces

A skew ray is a perfectly general ray; however, the application of the
term “skew” is usually restricted to rays which are not meridional
rays. A skew ray must be defined in three coordinates x, y, and z,
instead of just z and y as in the case of meridional rays. Until the
advent of the electronic computer, skew rays were rarely traced
because of the lengthy computation involved. Since a skew ray takes
only a bit longer to trace on an electronic computer than a meridional
ray, the reverse situation is now common, and meridional rays are usu-
ally traced as special cases of general rays. The general raytracing
equations given below are slightly modified from those presented by D.
Feder in the Journal of the Optical Society of America, vol. 41, 1951,
pp. 630–636.

The ray is defined by the coordinates x, y, and z of its intersection
point with a surface, and by its direction cosines, X, Y, and Z. The ori-
gin of the coordinate system is at the vertex of each surface. Figure
10.4 shows the meanings of these terms. Note that if x and X are both
zero, the ray is a meridional ray and direction cosine Y equals sin U.
The direction cosines are the projections, on the coordinate axes, of a
unit-length vector along the ray. The direction cosines may be visual-
ized as the length, height, and width of a rectangular solid or box
which has a diagonal equal to one (1.0). (Note that the optical direction
cosine is simply the direction cosine as defined above, multiplied by
the index of refraction.)

The computation is opened by determining the values for x, y, z, X,
Y, and Z with respect to an arbitrarily chosen reference surface, which
may be plane (the usual choice) or spherical. Convenient choices for
the location of the reference surface are at the object (which allows the
easy use of a curved object surface, if appropriate), at the vertex of the

308 Chapter Ten



first surface, or at the entrance pupil. Note that Eq. 10.3a is simply the
equation of a sphere (and thus assures that the ray origin point lies in
the reference surface), and that Eq. 10.3b assures that the square of
the unit vector along the ray is equal to 1.0.

Opening (at the reference surface):

c (x2 � y2 � z2) �2z � 0 (10.3a)

X 2 � Y 2 � Z 2 � 1.0 (10.3b)

Transfer to the first (or next) surface:

e � tZ� (xX � yY � zZ) (10.3c)

M1z � z � eZ � t (10.3d)

M1
2 � x2 � y2 � z2 � e2 � t2 � 2tz (10.3e)

E1 � �Z2 � c�1(c1M1�2 � 2M�1z)� (10.3f)

L � e � (10.3g)

z1 � z � LZ � t (10.3h)

y1 � y � LY (10.3i)

x1 � x � LX (10.3j)

Refraction:

E′ ��1� �		�
2

(1 �	 E1
2)	 (10.3k)

n
�
n1

(c1M1
2�2M1z)

��
Z � E1
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meanings of the spatial coordinates (x, y, z) of the ray intersection with the surface and
of the ray direction cosines, X, Y, and Z. (b) Illustrating the system of subscript notation.



g1 � E′1 � E1 (10.3l)

Z1 � Z � g1c1z1 � g1 (10.3m)

Y1 � Y � g1c1y1 (10.3n)

X1 � X � g1c1x1 (10.3o)

Terms without subscript refer to the reference surface and the follow-
ing space. Terms subscripted with 1 refer to the first surface and the
following space.

The symbols have the following meanings:

x,y,z The spatial coordinates of the ray intersection with the reference
surface.

x1,y1,z1 The spatial coordinates of the ray intersection with surface #1.

M1 The distance (vector) from the vertex of surface #1 to the ray, per-
pendicular to the ray.

M1z The z component of M1.

E1 The cosine of the angle of incidence at surface #1.

L The distance along the ray from the reference surface (x, y, z) to sur-
face #1 (x1, y1, z1). Lj is the distance from surface j to j�1.

E′1 The cosine of the angle of refraction (I′) at surface #1.

X,Y,Z The direction cosines of the ray in the space between the reference
surface and surface #1 (before refraction).

X1,Y1,Z1 The direction cosines after refraction by surface #1.

c The curvature (reciprocal radius � 1/R) of the reference surface.

c1 The curvature of surface #1.

n The index between the reference surface and surface #1.

n′ The index following surface #1.

t The axial spacing between the reference surface and surface #1.

Notice that the choice of the positive value for the square root in Eq.
10.3f selects that intersection of the ray with the surface which is
nearer the surface vertex. Also, if the argument under the radical in
Eq. 10.3f is negative, it indicates that the ray misses (never intersects)
the spherical surface. If the argument under the radical in Eq. 10.3k
is negative, it indicates that the angle of incidence exceeds the critical

n
�
n1

n
�
n1

n
�
n1

n
�
n1
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angle; the ray is thus subject to total internal reflection (TIR) and can-
not pass through the surface.

The calculation is opened by inserting c, two of the coordinates (x, y, z),
and two of the direction cosines (X, Y, Z) into Eqs. 10.3a and b and solv-
ing for the third coordinate and the third direction cosine. Then the
intersection of the ray with the first surface (x1, y1, z1) is determined
from Eqs. 10.3c through 10.3j. Next the ray direction cosines after
refraction at surface #1 (X1, Y1, Z1) are found from Eqs. 10.3k through
10.3o. This completes the raytrace through the first surface; at this
point Eqs. 10.3a and 10.3b (with unit subscripts) may be used to check
the accuracy of the computation.

To transfer to the second surface, the subscripts of Eqs. 10.3c through
10.3j are advanced by one, and x2, y2, and z2 are determined. Similarly,
the direction cosines after refraction (X2, Y2, Z2) at surface #2 are found
by Eqs. 10.3k through 10.3o with the subscripts incremented.

This process is repeated until the intersection of the ray with the
final surface of the system, which is usually the image plane, has been
determined. This completes the calculation.

Note that any ray which intersects the axis is a meridional ray; thus
it is only necessary to trace skew rays from off-axis object points.
Further, there is no loss of generality in assuming that the object point
lies in the y�z plane of the coordinate system (because we assume a
system with axial symmetry). Therefore, any skew ray can be started
with x equal to zero. When this is done, it is apparent that the two
halves of the optical system, in front of, and behind the y � z plane are
mirror images of each other and that any ray Xk, Yk, Zk passing
through xk, yk, zk has a mirror image (�Xk), Yk, Zk passing through
(�xk), yk, zk in the other half of the system. For this reason, it is only
necessary to trace skew rays through one-half of the system aperture;
rays through the other half are represented by the same data with the
signs of x and X reversed.

Example B

Using the lens of Example A, we will trace a skew ray originating in
the object plane (200 mm to the left of the lens) at a point 20 mm above
the axis. Thus, the ray intersection coordinates in the reference plane
(in this case, the object plane) are x � 0, y � �20, z � 0. If we set Y �
�0.1 and X � �0.1, the ray will intersect the first surface of the lens
approximately in the x�z plane, about 20 mm in front of the (optical)
z axis. For the image surface we will use the paraxial focal plane as
computed in Example A. The calculation is shown in the table on the
next page.
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10.5 General, or Skew, Rays: Aspheric
Surfaces

For raytracing purposes, an aspheric surface of rotation is convenient-
ly represented by an equation of the form

z � f(x, y) � � A2s2 � A4s4 � ... � Ajs j (10.4a)

where z is the longitudinal coordinate (abscissa) of a point on the sur-
face which is a distance s from the z axis. Using the same coordinate
system as Sec. 10.4, the radial distance s is related to coordinates y
and x by

s2 � y2 � x2 (10.4b)

As shown in Fig. 10.5, the first term of the right-hand side of Eq. 10.4a
is the equation for a spherical surface of radius R � 1/c. The subse-
quent terms represent deformations to the spherical surface, with A2,
A4, etc., as the constants of the second, fourth, etc., power deformation
terms. Since any number of deformation terms may be included, Eq.
10.4a is quite flexible and can represent some rather extreme aspher-

cs2

��
[1 � �1 � c�2s2�]
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Example B—Skew Trace through a Sphere

First Second 
Object plane surface surface Image plane

R �50 �50
c 0.0 �0.02 �0.02 0.0
t �200. �15. �65.517241
n 1.0 1.50 1.0
Transfer:
e by 10.3c �199.989899 �12.188013 �71.860665
Mz by 10.3d �2.0201011 �1.590643 �3.468077
M2 by 10.3e �404.040418 �389.369720 107.475746
E by 10.3f �0.8588247 �0.8772472 �0.9224280
L by 10.3g �206.546141 �6.327736 �75.620392
z by 10.3h (0.0) �4.470247 �4.237125 0.000000
y by 10.3i (�20.0) �0.654614 �1.046031 �7.078610
x by 10.3j (0.0) �20.654614 �20.116291 �8.456088
Refraction:
E′ by 10.3k �0.9398771 �0.6939135
g by 10.3l �0.3673272 �0.6219573
Z by 10.3m (�0.9899495) �0.9944527 �0.9224280
Y by 10.3n (�0.1) �0.0618575 �0.0797745
X by 10.3o (�0.1) �0.0850734 �0.3778396
Check:
zero by 10.3a (0.0) �0.0000001 �0.0000015
1.0 by 10.3b (1.0) 1.0000000 1.0000001



ics. Note that Eq. 10.4a is redundant in that the second-order defor-
mation term (A2s2) is not necessary to specify the surface, since it can
be implicitly included in the curvature c. The importance of the inclu-
sion of this term is that otherwise a large value of c (i.e., a short
radius) could be required to describe the surface, and rays which
would actually intersect the aspheric surface might not intersect the
reference sphere. As can be seen from Example C, if necessary the ref-
erence sphere may be a plane.

Aspheric surfaces which are conic sections (paraboloid, ellipsoid,
hyperboloid) also can be represented by a power series; see Sec. 13.5
for further details.

The difficulty in tracing a ray through an aspheric surface lies in
determining the point of intersection of the ray with the aspheric,
since this cannot be determined directly. In the method given here,
this is accomplished by a series of approximations, which are contin-
ued until the error in the approximation is negligible.

The first step is to compute x0, y0, and z0, the intersection coordinates
of the ray with the spherical surface (of curvature c) which is usually
a fair approximation to the aspheric surface. This is done with Eqs.
10.3c through 10.3j of the preceding section.

Then the z coordinate of the aspheric (z�0) corresponding to this dis-
tance from the axis is found by substituting s0

2 � y0
2�x0

2 into the equa-
tion for the aspheric (10.4a)

z�0 � f (y0, x0) (10.4c)
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Figure 10.5 Showing the signifi-
cance of Eq. 10.4a, which defines
an aspheric surface by a defor-
mation from a reference spheri-
cal surface. The z coordinate of a
point on the surface is the sum
of the z coordinate of the refer-
ence sphere and the sum of all
the deformation terms.



Then compute

l0 � �1 � c2�s0
2� (10.4d)

m0 � �y0[c � l0(2A2 � 4A4s0
2 � ... � jAjs0

(j�2))] (10.4e)

n0 � �x0[c � l0(2A2 � 4A4s0
2 � ... � jAjs0

(j�2))] (10.4f)

G0 � (10.4g)

where X, Y, and Z are the direction cosines of the incident ray.
Now an improved approximation to the intersection coordinates is

given by
x1 � G0 X � x0 (10.4h)

y1 � G0Y � y0 (10.4i)

z1 � G0Z � z0 (10.4j)

The process is sketched in Fig. 10.6.
The approximation process is now repeated (from Eq. 10.4c to 10.4j)

until the error is negligible, i.e., until (after k times through the
process)

zk � z�k (10.4k)

to within sufficient accuracy for the purposes of the computation.

l0 (z�0 � z0)
���
(Xl0 � Ym0 � Zn0)
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Figure 10.6 Determination of the ray intersection with an aspheric
surface. The intersection is found by a convergent series of approx-
imations. Shown here are the relationships involved in finding the
first approximation after the intersection with the basic reference
sphere has been determined.



The refraction at the surface is carried through with the following
equations:

P2 � lk
2 � mk

2 � nk
2 (10.4l)

F � Zlk � Ymk � Xnk (10.4m)

F ′ � �P2�		1� � �		F 2	 (10.4n)

g � �F ′ � F� (10.4o)

Z1 � Z � glk (10.4p)

Y1 � Y � gmk (10.4q)

X1 � X � gnk (10.4r)

This completes the trace through the aspheric. The spatial intersection
coordinates are xk, yk, and zk, and the new direction cosines are X1, Y1,
and Z1.

Example C

As a numerical example, let us trace the path of a ray through a
paraboloidal mirror. The equation of a paraboloid with vertex at the
origin is

z �

and if we choose a concave mirror with a focal length of �5, the con-
stants of Eq. 10.4a become c � 0, A2 � 1/(4f) � �0.05, and A4, A6, etc.,
equal zero. Thus

z � �0.05s2 � �0.05 (y2 � x2)

We will place the initial reference plane at the vertex of the parabo-
la and the final reference (image) plane at the focal point. Thus t � 0
and t1 � f � �5 (following our usual sign convention for distance after
reflections). We will trace the ray striking the reference plane at z � 0,
y � 0, x � 1.0 at a direction of Y � 0.1, X � 0, and (by Eq. 10.3b) 

s2

�
4f

n
�
n1

n
�
n1

n
�
n1

n
�
n1

1
�
P2

n2

�
n1

2
n2

�
n1

2
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Z � 0.9949874. The index of refraction before reflection n equals 1.0
and the index after reflection n1 will then be �1.0, again following the
convention of reversed signs after reflection.

The computation is indicated in the following tabulation, where the
applicable equation number is given in parentheses at each step. The
steps indicated by (10.4d) through (10.4c) are repeated top to bottom
until z�k � zk to (in this instance) seven places past the decimal. The
fact that this example converged in only two cycles despite the fact
that c � 0 is a poor approximation to our paraboloid, is an indication
of the rapidity of convergence of this technique.

Reference surface: c0 � 0 t0 � 0.0 n0 � 1.0

Aspheric: z � �0.05s2 c1 � 0 A2 � �0.05 (A4, etc. � 0)

t1 � �5.0 n1 � �1.0

Image surface: c2 � 0

Given: z � 0, y � 0, x � �1.0

Z � �0.9949874 Y � �0.10 X � 0.0

Since c � 0 for the aspheric, it is obvious that z0 � z � 0, y0 � y � 0,
and x0 � x � 1.0. Thus, z�0 � �0.05(y2�x2) � �0.05 (by Eq. 10.4c) and
z�0�z0 � �0.05. (The same results can be obtained from Eqs. 10.3c
through j)

Intersection of Ray with Aspheric:

(10.4d) l0 � �1.0 l1 � �1.0

(10.4e) m0 � 0.0 m1 � �0.0005025

(10.4f) n0 � �0.1 n1 � �0.1

(10.4g) G0 � �0.0502519 G1 � �0.0000013

(10.4h) z1 � �0.050 z2 � �0.0500013

(10.4i) y1 � �0.0050252 y2 � �0.0050253

(10.4j) x1 � �1.0 x2 � �1.0

(10.4c) z�1 � �0.0500013 z�2 � �0.0500013

z�1�z1 � �0.0000013 z�2�z2 � 0.0000000

Refraction:

(10.4l) P2 � �1.0100002

(10.4m) F � �0.9949372

(10.4n) F′ � �0.9949372

(10.4o) g � �1.9701722

(10.4p) Z1 � �0.09751848

(10.4q) Y1 � �0.1009900
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(10.4r) X1 � �0.1970172

X1
2�Y1

2�Z1
2 � 1.0000001

Intersection of Ray with Image Surface:

(10.3c) e1 � �5.0246880

(10.3d) M2z � �0.0499993

(10.3e) M2
2 � �0.2550229

(10.3f) E2 � �0.9751848

(10.3g) L2 � �5.0759596

(10.3h) z2 � 0

(10.3i) y2 � �0.5075959

(10.3j) x2 � �0.0000513

10.6 Coddington’s Equations

The tangential and sagittal curvature of field can be determined by a
process which is equivalent to tracing paraxial rays along a principal
ray, instead of along the axis. In Chap. 3 it was pointed out that the
slope of the ray intercept plot was equal to Zt, the tangential field cur-
vature. This slope could be determined by tracing two closely spaced
meridional rays and computing

Zt � �

and a similar process using close sagittal (skew) rays would yield Zs,
the sagittal field curvature.*

Coddington’s equations are equivalent to tracing a pair of infinitely
close rays, and the formulation has a marked similarity to the paraxi-
al raytracing equations. However, object and image distances as well
as surface-to-surface spacings are measured along the principal ray
instead of along the axis, and the surface power is modified for the
obliquity of the ray.

Figure 10.7 shows a principal ray passing through a surface with
sagittal and tangential ray fans originating at an object point and con-
verging to their focii. The distance along the ray from the surface to the
focus is symbolized by s and t for the object distance and by s′ and t′ for
the image distance. The sign convention is as usual; if the focus or
object point is to the left of the surface, the distance is negative; to the
right, positive. In Fig. 10.7, s and t are negative, s′ and t′ are positive.

�
H′
��

 tan U′

H′1�H′2
��
tan U′2�tan U′1
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*Note that despite the currently almost universal use of z to represent the optical axis,
it is still common usage to symbolize field curvature as xt and xs.



The computation is carried out by tracing the principal ray through
the system using the meridional formulas of Sec. 10.3, determining the
oblique power for each surface by

� � c (n′ cos I′ � n cos I) (10.5a)

and determining the distance (D) from surface to surface along the ray
by Eq. 10.2m. The initial values of s and t are determined (Eq. 10.2m
is often useful in this regard) and then the focal distances are deter-
mined by solving the following equations for s′ and t′.

� � � (sagittal) (10.5b)

� � � (tangential) (10.5c)

The values of s and t for the next surface are given by

s2 � s′1 � D (10.5d)

n cos2 I
�

t
n′ cos2 I′
��

t′

n
�
s

n′
�
s′
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t2 � t′1 � D (10.5e)

where D is the value given by Eq. 10.2m.
The calculation is repeated for each surface of the system; the final val-

ues of s′ and t′ represent the distances along the ray from the last surface
to the final foci. The final curvature of field (with respect to a reference
plane an axial distance l′ from the last surface) can be found from

zs � s′ cos U′ � z � l′ (10.5f)

zt � t′ cos U′ � z � l′ (10.5g)

where z is determined for the last surface by Eq. 10.2l.
The preceding equations are ill-suited for use on an electronic com-

puter, since s and t may be too large for the machine capacity, or too
small (so that 1/s and 1/t become large). The following equations have
been developed to avoid this difficulty. They make use of ys and yt,
which are fictional ray heights from the principal ray (analogous to the
paraxial ray heights used in Eqs. 10.1) and equally fictional ray slope-
index products Ps and Pt with respect to the principal ray.

The calculation is again begun by tracing a principal ray. The open-
ing equations are

Ps � (10.5h)

Pt � (10.5i)

where the data refer to the first surface of the system, and ys and yt are
arbitrarily chosen.

The ray slope-index product after refraction is determined from

P ′s � Ps � ys� (10.5j)

P ′t � Pt � yt� (10.5k)

where � is the oblique surface power given by Eq. 10.5a. The “ray
height” at the next surface is given by

( ys) 2 � ( ys) 1 � (10.5l)

(yt) 2 � �(yt) 1 � � (10.5m)

At surface #2, the incident ray slope-index product is given by P2 � P ′1.

(P ′t)1D
��
n′1 cos2 I ′1

cos2 I ′1
�
cos2 I2

(P ′s)1D
�

n′1

�nyt cos2 I
��

t

�nys
�

s
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This process is repeated for each surface of the system, and the final
image distances at the last surface are found from:

s′ � (10.5n)

t′ � (10.5o)

The final curvature of field is found from Eqs. 10.5f and g.

Example D

We will use the meridional ray traced in Example A as the principal
ray and trace close sagittal and tangential rays about it, assuming
that the object point is at the axial intercept of the ray, i.e., on the axis
and 200 mm to the left of the first surface. (From a practical stand-
point, this will be equivalent to determining the imagery of the lens
when used with a small pinhole diaphragm located 20 mm (radially)
away from the axis.)

To find the initial values for s and t, we determine z at the first sur-
face by Eq. 10.2l (using the raytrace data from Example A for the first
surface). Then

s � t � � � �205.445587

The oblique surface powers are determined from Eq. 10.5a as

�1 � �0.02 (1.5 � 0.942809 � 1.0 � 0.866025) � � 0.0109638

�2 � �0.02 (1.0 � 0.701248 � �1.5 � 0.879835) � � 0.0123701

Equation 10.2m gives the distance along the ray between surfaces as

D � � �6.429045

then for the first surface

� � 0.0109638

s′ � � 246.0488

� � 0.0109638
0.750

��
�205.445

1.5 (0.942809)2

��
t′

1
��
�205.445

1.5
�
s′

15.0 � 4.415778 � (�4.177626)
����

0.996508

�200 � 4.415778
���

0.994987
l�z
�
cos U

�n′yt cos2 I ′
��

P ′t

�n′ys
�

P′s
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t′ � �182.3186

We transfer to surface #2 by Eqs. 10.5d and e to get

s2 � �239.6198

t2 � �175.8896

Then using Eqs. 10.5b and c for the second surface

� � 0.0123701

s′2 � � 53.6768

� � 0.0123701

t′2 � � 25.9200

By setting l′ in Eqs. 10.5f and g equal to �45.6310 (the final intercept
of the marginal ray traced in Example A), we find that, with respect to
this point,

zs � 49.8086�4.1776�45.6310 � 0.00

zt � 24.0521�4.1776�45.6310 � �25.7565

One may gain an understanding of this rather interesting result by
sketching the path of a few rays in a system of the type we have ray-
traced, remembering that a simple biconvex lens is afflicted with a
large undercorrected spherical aberration. Alternatively, a study of
the ray intercept curve for undercorrected spherical (with coordi-
nates rotated to account for the shift of the reference plane to the
focus of the marginal ray) will indicate the meaning of the value of zt

found above.

10.7 Aberration Determination

This section will briefly indicate the computational procedures
involved in determining the numerical values of the various aberra-
tions discussed in Chap. 3. Since this discussion will be somewhat con-
densed, the reader may wish to review Chap. 3 at this point.

We will assume that the paraxial focal distance l′ (from the vertex of
the last surface of the system to the paraxial image) has been deter-
mined. It is also useful to predetermine the size and location of the
entrance pupil.

1.161164
��
175.8896

0.491748
��

t′

1.5
��
239.6198

1
�
s′
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Spherical aberration

Trace a marginal meridional ray from the axial intercept of the object
(through the edge of the entrance pupil of the system) and determine
its final axial intercept L′ and/or its intersection height H′ in the
paraxial focal plane. Then the longitudinal spherical aberration (LA′)
is given by

LA′ � L′ � l′ (10.6a)

and the transverse spherical aberration (TA′) is given by

TA′ � H′ � �(LA′) tan U′ (10.6b)

The spherical aberration is overcorrected if the sign of nLA′ is positive
and undercorrected if the sign is negative.

The zonal spherical aberration is determined by tracing a second ray
through the 0.707 zone (i.e., a ray which strikes the entrance pupil at
a distance from the axis equal to 0.707 times the distance for the mar-
ginal ray). The zonal aberration is found from Eqs. 10.6a and b. Rays
may also be traced through other zones of the aperture if a more com-
plete description of the axial correction of the system is required. The
customary choice of the 0.707 � �0.5� zone for zonal rays derives from
the fact that, for most systems, the longitudinal spherical can be
approximated by

LA′ � aY2 � bY4 (10.6c)

where Y is the ray height and a and b are constants. Thus, if the mar-
ginal spherical, at a ray height of Ym, is corrected to zero, the maxi-
mum longitudinal zonal aberration occurs at

Y � �	 � 0.707Ym

The maximum transverse spherical TA′ occurs at

Y � �0.6Ym�2� � 0.775Ym

Coma

Three meridional rays are traced from an off-axis object point: a prin-
cipal ray through the center of the entrance pupil and upper and low-
er rim rays through the upper and lower edges of the pupil. The final
intersection heights of these rays with the paraxial focal plane are
determined. Then the tangential coma is given by

Ym
2

�
2
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ComaT � H′A � H′p � (10.6d)

For most lenses, where the ray slope U′ is a smooth uniform function of
the ray position in the pupil, the following simplified equation is suffi-
ciently accurate. This can be evaluated when examining a ray intercept
plot by connecting the ends of the plot with a straight line and noting
the distance from the height of the principal ray intersection to the line.

ComaT � � H′p

where H′p is the intercept for the principal ray and H′A and H′B are the
intercepts of the rim rays.

Ordinarily, sagittal coma is very nearly equal to one-third of the tan-
gential coma (especially near the axis). Sagittal coma can be determined
by tracing a skew ray through the entrance pupil at y � 0, x � the
radius of the pupil. Then the displacement of the y intersection coordi-
nate in the image plane from H′p gives the sagittal coma (note that in
this instance the image plane should be the plane of intersection of the
upper and lower rim rays, i.e., where H′A � H′B).

The variation of coma with field angle (or image height) can be
determined by repeating the process for another object height. The
variation of coma with aperture is found by tracing zonal oblique rays.

OSC

The offense against the (Abbe) sine condition (OSC) is an indication of
the amount of coma present in regions near the optical axis. It is deter-
mined by tracing a paraxial and a marginal ray from the axial object
point and substituting their data into

OSC � � � � 1 (10.6e)

where u and u′ are the initial and final slopes of the paraxial ray, U
and U′ are the initial and final slopes for the marginal ray, l ′ and L′
are the final intercept lengths of the paraxial and marginal rays, and
l ′p is the final intercept of the principal ray (thus l ′p is the distance
from the last surface to the exit pupil). If the object is at inifinity, the
initial y and Q are substituted for u and sin U in 10.6e.

For regions near the axis

Comas � H′ (OSC)

Comat � 3H′ (OSC)
(10.6f)

(l′ � l′p)
��
(L′ � l′p)

u′
�
sin U ′

sin U
�

u

H′A � H′B
��

2

(H′A � H′B) (tan U′A � tan U′p)
����

(tan U′B � tan U′A)
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Distortion

Distortion is found by tracing a meridional principal ray from an off-
axis object point through the center of the entrance pupil and deter-
mining its intersection height H′p in the paraxial focal plane. A
paraxial principal ray may be traced from the same object point to
determine the paraxial image height h′, or the optical invariant I may
be used as indicated in Chap. 2.

Distortion � H ′p � h′ (10.6g)

Distortion is frequently expressed as a percentage of the image height,
thus:

Percent distortion � � 100 (10.6h)

The variation of distortion with image height or field angle is found by
repeating the process for several object heights.

Astigmatism and curvature of field

Trace a principal ray from an off-axis object point through the cen-
ter of the entrance pupil. Then trace close sagittal and tangential
rays by Coddington’s equations (Sec. 10.6) and determine the final
z′s and z′t with respect to the paraxial image plane; z′s and z′t are
then the sagittal and tangential curvature of field for this image
point.

Alternatively, a meridional ray from the object point passing
through the system close to the principal ray can be traced. Then

Zt � (10.6i)

will provide a close approximation to z′t, since Z′t approaches z′t, as the
two rays approach each other. A similar procedure with a close skew
ray will yield Z′s.

Since the variation of field curvature with image height is usually of
interest, z′s and z′t may be determined for additional object heights or
field angles and plotted against obliquity.

Note that it is common to refer to the field curvature (zs and zt) as xs

and xt, in conformance with earlier usage when the optical axis was
denoted as the x axis.

H′p�H′
��
tan U′�tan U′p

H ′p�h′
�

h′
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Chromatic aberration—Axial (or
longitudinal)

Paraxial longitudinal chromatic aberration is found by determining
the paraxial image points for the longest and shortest wavelengths of
light in the spectral bandpass of the system. This is done by deter-
mining l′ using the indices of refraction associated with one wave-
length and then with the other. For visual systems, the long
wavelength is usually taken as C-light (	 � 0.6563 �m hydrogen line)
and the short wavelengths as F-light (	 � 0.4861 �m hydrogen line).
The longitudinal chromatic aberration is then

LchA′ � l ′F � l ′C (10.6j)

The transverse measure of axial chromatic can be found from

TAch � �LchA tan U′K

or by calculating the height of the rays in the mid-wavelength focal
surface and

TAch � h′F � h′C

The chromatic aberrations for other zones of the aperture are found
by tracing meridional rays from the axial object point for each wave-
length and substituting the final axial intercepts into Eq. 10.6j.

The secondary spectrum is found by tracing axial rays in at least
three wavelengths—long, middle, and short—and plotting their axial
intercepts against wavelength. A numerical value for the secondary
spectrum is strictly valid only when the long and short wavelength
images are united at a common focus, so that

l ′F � l ′C

then

SS′ � l ′d � l ′F � l ′d � l ′C (10.6k)

where the subscripts C, d, and F indicate long, middle, and short
wavelengths. For visual work, C, F, and d represent the C and F lines
of hydrogen and the helium d line at 0.5876 �m.

The spherochromatism (chromatic variation of spherical aberration)
is found by determining the spherical aberration at various wave-
lengths. Thus, for visual work the spherochromatism would be the
spherical in F light minus the spherical in C light.
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Chromatic aberration—Lateral

Lateral chromatic aberration, or chromatic difference of magnifica-
tion, is determined by tracing a principal ray from an off-axis object
point through the center of the entrance pupil in both long and short
wavelengths and finding the final intersection heights with the focal
plane. Then

TchA � H ′F � H ′C (10.6l)

for visual work. Alternatively, the paraxial lateral color can be found
by tracing paraxial “principal” rays in two colors and substituting h′F
and h′C into Eq. 10.6l. The chromatic difference of magnification is giv-
en by

CDM � TchA/h′

Lateral chromatic aberration should not be confused with the trans-
verse expression for axial (longitudinal) chromatic aberration, which is
given by

TAch � H′F �  H ′C � � (LchA) tan U ′ (10.6m)

where the data are derived from rays traced from an object point on
the optical axis.

Optical path difference (wave-front
aberration)

Recalling (from Chap. 1) that a wave front which forms a “perfect”
image is spherical in shape and is centered about the image point, it is
apparent that the aberration of an image formed by an optical system
can be expressed in terms of the departure of the wave front from an
ideal spherical wave front. The velocity of light in a medium of index
n is given by c/n, where c is the speed of light in vacuum, and the time
required for a point on a wave front to travel a distance D through the
medium is nD/c. Thus, if a number of rays from an object point are
traced through an optical system, and the distances along each ray
from surface to surface are computed (by Eqs. 10.2m or 10.4g), includ-
ing the distance from object point to the first surface, then the points
for which �nD/c, or �nD, are equal, are points through which the wave
front passes at the same instant. A smooth surface through these
points is the locus of the wave front.

Referring to Example D, the distance along the ray from the object
point to the first surface was computed as 205.446 mm. The distance
from surface 1 to surface 2 was D � 6.429 mm, and the distance from
surface 2 to the axial intercept of the ray was S′2 � 53.677.
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If we now multiply each distance by the index (1.0, 1.5, and 1.0,
respectively) and sum the products, we find that the optical path is

�nD � 268.766

The calculation can be repeated for a ray along the axis; the dis-
tances are 200 mm, 15 mm, and 45.631, and the optical path along the
axis is

�nD � 268.131

Since the axial path is shorter by some 0.635 mm, it is apparent that
when the wave front reaches this point via the axis, it is still 0.635 mm
from the point along the path described by the marginal ray. If we
“back up” a bit (a fraction of a nanosecond) to the time when the wave
front has just emerged from the lens and construct a reference sphere
(or circle) about L′ � 45.631, it will be apparent that the departure of
the wave front from the reference sphere is equal to the difference in
the optical paths to the reference sphere. Thus the wave-front aberra-
tion or optical path difference (OPD) can be found by tracing rays from
the object to the surface of a reference sphere centered on the image
point and determining

OPD � (�nD)A � (�nD)B (10.6n)

Note that the choice of the reference image point location will have a
great effect on the size of the OPD, since a shift of the reference point
is equivalent to focusing (in the longitudinal direction) or to scanning
the image plane for the point image (when shifting the reference point
laterally). In the example cited, a reference sphere constructed about
a point 55.57 mm from the last surface would represent a much better
“fit” to the wave front, and the OPD about this point would represent
(approximately) the minimum obtainable for the aperture represented
by this ray.

Although the example cited above showed an OPD of more than
1000 wavelengths of visible light, it should be noted that OPD is usu-
ally measured in wavelengths, or fractions thereof. For example, the
Rayleigh criterion may be expressed as follows: An image will be “sen-
sibly” perfect if there exists not more than one-quarter wavelength
difference in optical path over the wave front with reference to a
sphere centered at the selected image point. The numerical precision
required to obtain significant results in an OPD calculation is higher
than that required for ordinary raytracing. The OPD is customarily
determined with respect to a spherical surface (centered about the
reference point) with a radius equal to the distance from the exit pupil
to the reference point.
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10.8 Third-Order Aberrations: 
Surface Contributions*

If an analytic expression is derived for the transverse aberration of a
general ray with respect to a reference ray (i.e., the lateral separation
of their intersections in a reference plane), the expression can be bro-
ken down into orders, or powers, of the ray parameters. The parame-
ters usually chosen are: (1) the obliquity of the reference ray, and 
(2) the separation between the two rays at the pupil of the system;
they correspond to: (1) image height, and (2) system aperture. The
aberrations of the first order turn out to be those which can be elimi-
nated by locating the reference point at the paraxial image. The first-
order aberrations are thus defects of focus or image size which vary
linearly with aperture or obliquity, such as simple focusing or paraxi-
al chromatic aberration (transverse axial color or lateral color). See.
Sec. 3.2 and Eqs. 3.1 and 3.2.

The third-order terms correspond to the primary aberrations. The
term in y3 (where y is the semiaperture, or separation of the rays) has
no h (image height) component and corresponds to spherical aberra-
tion. The term in y2h corresponds to coma. The term in yh2 represents
the astigmatism and curvature of field, and the term in h3 is distor-
tion. The portions of the total aberration represented by these terms
are called the third-order aberrations.

There will also be terms in y5, y4h, y3h2, y2h3, yh4, and h5 (which are
called the fifth-order aberrations), as well as terms in seventh, ninth,
and higher exponents. (Note that in European usage, third and fifth
order are frequently referred to as primary and secondary aberration).
The importance of these aberration contributions diminishes rapidly
as the exponent increases, just as in the series expansion for the sine
of an angle

sin x � x � � � � ...

The analogy here is quite good, since for optical systems in which
the sines of the angles involved can be satisfactorily represented by
sin x � x, first-order (paraxial) optics, which are based on just this
approximation, are entirely adequate to describe the imagery. 
For systems with larger angles, more terms of the expansion are
necessary to adequately describe the imaging properties, and the
third- (or higher-) order aberration contributions must be taken into
account.

x7

�
7!

x5

�
5!

x3

�
3!
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Thus a knowledge of just the paraxial and third-order characteris-
tics frequently yields a fair approximation to the performance of a sys-
tem which is modest in aperture and angular coverage. In systems
where this approximation is poor, the third-order contributions are
nonetheless of value. Even in systems where the fifth and higher
orders are appreciable, the higher orders tend to change very slowly as
the design parameters (radius, spacing, index) are varied, so that,
although the first and third orders may be inadequate to fully describe
the correction of the system, they are capable of indicating the changes
which will be produced by moderate changes in the design parameters.
For example, if a parameter change produced a change of 
x in a third-
order aberration, one would expect that the change in the total aber-
ration 
X (as determined by a trigonometric raytrace) would be very
nearly equal to 
x, even though the third-order aberration x might be
quite different than the trigonometric value X. Further, surfaces which
make a large contribution to the third-order aberrations also tend to
make a large contribution of the same sign to the higher-order aberra-
tions, and a knowledge of the source of high-order residuals is fre-
quently useful in eliminating them.

The third-order aberration contributions* can be readily calculated
from the data of two paraxial rays; an axial ray (from the axial inter-
cept of the object through the rim of the entrance pupil) and a (parax-
ial) principal ray (from an off-axis object point through the center of
the entrance pupil). These rays are traced by Eqs. 10.1a through 10.1g.
In the following, the ray data of the axial ray will be symbolized by
unsubscripted letters (y, u, i, etc.) and that of the paraxial principal
ray by letters with subscript p (yp, up, ip, etc.).

The optical invariant Inv is determined from the data of the two
rays at the first surface, or any convenient surface.

Inv � ypnu � ynup � hn′ku′k (10.7a)

The final image height (i.e., the intersection point of the paraxial
“principal” ray in the image plane) is determined from the principal
ray or by

h � (10.7b)

where n′k and u′k are the index and slope (of the axial ray) after pass-
ing through the last surface of the system.

Inv
�
n′ku′k
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Then the following are evaluated for each surface of the system:

i � cy � u (10.7c)

ip � cyp � up (10.7d)

B � y(u′ � i) (10.7e)

Bp � yp (u′p � ip) (10.7f)

TSC � Bi2h (10.7g)

CC � Biiph (10.7h)

TAC � Bip
2h (10.7i)

TPC � (10.7j)

DC � h [Bpiip � 12(u′p2 � up
2) ] (10.7k)

TAchC � �
n � 
n′� (10.7l)

TchC � �
n � 
n′� (10.7m)

As previously, primed symbols refer to quantities after refraction at
a surface. Most of the symbols (y, n, u, c) are defined in Sec. 10.2, or
immediately above. Those which have not been previously defined are:

B and Bp Intermediate steps in the calculation.

i The paraxial angle of incidence.


n The dispersion of the medium, equal to the difference between
the index of refraction for the short wavelength and long wave-
length. For visual work, 
n � nF � nC, or 
n � (n � 1)/V.

Inv The optical invariant

The third-order aberration contributions of the individual surfaces
are given by Eqs. 10.7g through 10.7m, where

TSC is the transverse third-order spherical aberration contribution.

CC is the sagittal third-order coma contribution.

3CC is the tangential third-order coma contribution.

n
�
n′

�yip
�
n′ku′k

n
�
n′

�yi
�
n′ku′k

�(n � n′) chInv
��

2nn′

n(n′ � n)
��

2n′Inv

n(n′ � n)
��

2n′Inv
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TAC is the transverse third-order astigmatism contribution.

TPC is the transverse third-order Petzval contribution.

DC is the third-order distortion.

TAchC is the paraxial transverse axial chromatic aberration contribution.

TchC is the paraxial lateral chromatic aberration contribution.

Note that TAchC and TchC are first-order aberrations; since they
are customarily computed at the same time as the third-order aberra-
tions, the equations are presented here.

The longitudinal values of the contributions may be obtained by
dividing the transverse values by u′k, the final slope of the axial ray,
thus

SC �

AC �

PC �

(10.7n)

LAchC �

The Seidel coefficients can be obtained by multiplying the transverse
third-order contributions or sums by (�2n′ku′k). Thus

S1 � �TSC (2n′ku′k)

S2 � �CC (2n′ku′k)

S3 � �TAC (2n′ku′k)

S4 � �TPC (2n′ku′k)

S5 � �DC (2n′ku′k)

The third-order aberrations at the final image are obtained by
adding together the contributions of all the surfaces to get �TSC, �CC,
�TAC, etc. These contribution sums are as follows:

�TSC is the third-order transverse spherical aberration.

�SC is the third-order longitudinal spherical aberration.

�CC is the third-order sagittal coma.

3�CC is the third-order tangential coma.

�TAchC
��

u′k

�TPC
�

u′k

�TAC
�

u′k

�TSC
�

u′k
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�TAC is the third-order transverse astigmatism.

�AC is the third-order longitudinal astigmatism.

�TPC is the third-order transverse Petzval sum.

�PC is the third-order longitudinal Petzval sum.

�DC is the third-order distortion.

�TAchC is the first-order transverse axial color.

�LchC is the first-order longitudinal axial color.

�TchC is the first-order lateral color.

To the extent that the first- and third-order aberrations approximate
the complete aberration expansions, the following relationships are valid:

�SC ≈ L′ � l′ (spherical)

3�CC ≈ 12(H ′A � H ′B) � H ′p (tangential coma)

zs ≈ �PC � �AC (sag. curvature of field, xs)

zt ≈ �PC � 3�AC (tan. curvature of field, xt)

! � (Petzval radius of curvature)

≈ percentage distortion

�LAchC ≈ l′F � l′C (axial color)

�TchC ≈ h′F � h′C (lateral color)

Contributions from aspheric surfaces

For the purposes of computing the third-order contributions, we can
assume that the aspheric surface is represented by a power series in s2

z � 12Ces2 � (18Ce
3 � K) s4 � ... (10.7o)

in which the terms in s6 and higher may be neglected. For aspheric
surfaces given in the form of Eq. 10.4a, the equivalent curvature Ce

and equivalent fourth-order deformation constant K may be deter-
mined from

Ce � c � 2A2 (10.7p)

K � A4 � (4A2
2 � 6cA2 � 3c2) (10.7q)

A2
�
4

100�DC
��

h

h2

�
2�PC
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where c, A2, and A4, are the curvature and second- and fourth-order
deformation terms, respectively, of Eq. 10.4a. Note that if A2 is zero, 
Ce � c and K � A4; see Sec. 13.5 for conics, where A4 � "/8R3.

The aspheric surface contributions are determined by first com-
puting the contributions for the equivalent spherical surface Ce

using Eqs. 10.7g through m. Then the contributions due to the
equivalent fourth-order deformation constant K are computed by the
following equations and added to those of the equivalent spherical
surface to obtain the total third-order aberration contribution of the
aspheric surface.

W � (10.7r)

TSCa � Wy4h (10.7s)

CCa � Wy3yph (10.7t)

TACa � Wy2yp
2h (10.7u)

TPCa � 0 (10.7v)

DCa � Wyyp
3h (10.7w)

TAchCa � 0 (10.7x)

TchCa � 0 (10.7y)

It is worth noting that if the aspheric surface is located at the aper-
ture stop (or at a pupil), then yp � 0, and the only third-order aberra-
tion that is affected by the aspheric term is spherical aberration. The
Schmidt camera makes use of this by placing its aspheric corrector
plate at the stop so that only the spherical aberration of the spherical
mirror is affected by the plate. Conversely, if an aspheric is expected to
affect coma, astigmatism, or distortion, it must be located a significant
distance from the stop.

Example E

We shall determine the third-order surface contributions of the sim-
ple biconvex lens of Example A. We have already traced an axial
paraxial ray in this example; we shall add a paraxial principal ray
from an object point 20 mm below the axis and assume that the
entrance pupil is at the first surface. Thus the starting data for this
ray will be yp � 0 and up � �0.1. We shall also assume that the lens
is of crown glass with a V-value of 62.5 (and therefore 
n � 0.008).

4K (n′ � n)
��

Inv
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c �0.02 �0.02
t 15.0
n 1.0 1.5 1.0
y by 10.1d �20.0 �19.0
u by 10.1c �0.1 �0.066667 �0.29
i by 10.7c �0.5 �0.446667

by 10.1f
l′�65.517241

yp by 10.1d 0 �1.0
up by 10.1c �0.1 �0.066667 �0.09
ip by 10.7d �0.1 �0.046667

by 10.1g
h′�6.896552

by 10.7a Inv��2.0
by 10.7b h′� 6.896552

B by 10.7e �0.722222 �2.624375
Bp by 10.7f 0.0 �0.025625
TSC by 10.7g �1.245211 �3.610979 �TSC � �4.856190
SC by 10.7n �4.294 �12.452 �SC��16.745
CC by 10.7h �0.249042 �0.377266 �CC � �0.128224
TAC by 10.7i �0.049808 �0.039416 �TAC � �0.089224
AC by 10.7n �0.1717 �0.1359 �AC � �0.3077
TPC by 10.7j �0.045977 �0.045977 �TPC � �0.091954
PC by 10.7n �0.1585 �0.1585 �PC � �0.3171
DC by 10.7k �0.019157 �0.008922 �DC � �0.010235
TAchC by 10.7l �0.183908 �0.234115 �TAchC��0.418023
LchC by 10.7n �0.6342 �0.8073 �LchC � �1.4415
TchC by 10.7m �0.036782 �0.024460 �TchC � �0.012322

Example F

To illustrate the use of the aspheric third-order contribution formu-
las, we shall demonstrate that the third-order spherical of a parabo-
loidal mirror is equal to zero for an infinitely distant object. The
equation for a paraboloid is simply z � s2/4f, and in terms of Eq.
10.4a, c � 0, A2 � 1(4f ) and the higher-order constants (A4, A6, etc.)
are all zero. Thus, by Eqs. 10.7p, q, and r, we find that

Ce �

K �

W � �

remembering that for a mirror in air n � 1.0 and n′ � �1.0. Then Eq.
10.7s gives the contribution of the equivalent deformation constant as

�1
�
8f 3Inv

�8K
�
Inv

�1
�
64f 3

1
�
2 f
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TSCa � �

For an infinite object distance, the axial ray has a slope u � 0; Eq.
10.1c gives us (using Ce)u′ � �y/f and Eq. 10.7c yields i � y/2f.
Substituting these values into Eq. 10.7e, we get

B � y � � �
�

Now Eq. 10.7g gives the spherical aberration contribution of the equiv-
alent sphere as

TSC � � �
2
h

�

The contribution of the paraboloid mirror is given by the sum of TSC
and TSCa; since they are equal in magnitude and opposite in sign, the
sum is zero.

Note that the demonstration did not specify that the paraboloid
was concave (the more usual case); a convex paraboloid is equally
free of spherical when used in this manner. And although we
assumed the reflector to be in air for convenience, had we carried the
indices n′ � �n through the calculation, the result would have been
the same.

10.9 Third-Order Aberrations: Thin Lenses;
Stop Shift Equations

When the elements of an optical system are relatively thin, it is fre-
quently convenient to assume that their thickness is zero. As we have
previously noted, this assumption results in simplified approximate
expressions for element focal lengths, which are nonetheless quite use-
ful for rough preliminary calculations. This approximation can be
applied to third-order aberration calculations; the results form a very
useful tool for preliminary analytical optical system design. The fol-
lowing equations may be derived by application of the equations of the
preceding section to a lens element of zero thickness.

�y4h
�
8 f 3Inv

y
�
2f

�y2

�
2fInv

�y2

�
2fInv

y
�
2f

�y
�

f
(1.0) (�1.0 � 1.0)
���

2 (�1.0) Inv

y4h
�
8f 3Inv
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The thin-lens third-order aberrations are found by tracing an axial
and a principal ray through the system of thin lenses, in the manner
outlined in Chap. 2. The equations used are

u′ � u � y� (10.8a)

y2 � y1 � du′1 (10.8b)

where u and u′ are the ray slopes before and after refraction by the ele-
ment, � is the element power (reciprocal focal length), y is the height
at which the ray strikes the element, and d is the spacing between
adjacent elements.

From Chap. 2 we also recall that the power of a thin element is giv-
en by

� � 1/f

� (n � 1) (c1 � c2) (10.8c)

� (n � 1) c

where c � c1�c2 and c1 and c2 are the curvatures (reciprocal radii) of
the first and second surfaces of the element.

After tracing the axial and “principal” rays through the system, the
following are computed for each element

v � �or v ′ � � (10.8d)

Q � (10.8e)

where u and y are taken from the data of the axial ray and yp is from
the principal ray data.

Then the aberration contributions may be determined from the stop
shift equations:

TSC* � TSC (10.8f)

CC* � CC � Q � TSC (10.8g)

TAC* � TAC � 2Q � CC � Q2TSC (10.8h)

TPC* � TPC (10.8i)

DC* � DC � Q(TPC � 3TAC) � 3Q2CC � Q3TSC (10.8j)

TAchC* � TAchC (10.8k)

TchC* � TchC � Q � TAchC (10.8l)

yp
�
y

u ′
�
y

u
�
y
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The starred terms are the contributions from an element which is
not at the stop—that is, one for which yp ≠ 0. The unstarred terms are
the contributions from the element when it is in contact with the stop
(and yp � 0) and are given by the following equations:

TSC � (G1c3 � G2c2c1 � G3c2v � G4cc1
2 � G5cc1v � G6cv2)

� (G1c3 � G2c2c2 � G3c2v ′ � G4cc2
2 � G5cc2v′ � G6cv′2)

(10.8m)

CC � �hy2(0.25G5cc1 � G7cv � G8c2)

� �hy2 (0.25G5cc2 � G7cv ′ � G8c2) (10.8n)

TAC � (10.8o)

TPC � � (10.8p)

DC � 0 (10.8q)

TAchC � (10.8r)

TchC � 0 (10.8s)

TSchC � (10.8t)

The symbols in the preceding have the following meanings:

u′k is the final slope of the axial ray (at the image).

h is the image height (the intersection of the “principal” ray with the
image plane).

V is the Abbe V-number of the lens material, equal to (nd � 1)/(nF � nC).

P is the partial dispersion of the lens material, equal to (nd � nC)/(nF � nC).

G1 through G8 are functions of the lens material index, listed below.

TSC, CC, TAC, DC, TPC, TAchC, and TchC have the same meanings
as in Sec. 10.8.

TSchC is the transverse secondary spectrum contribution, equal to
(l ′d � l ′C)(�u ′k).

The transverse aberrations may be converted to longitudinal mea-
sure by dividing by (�u ′k) per Eq. 10.7n, as follows:

y2�P
�
Vu′k

y2�
�
Vu ′k

TAC
�

n
h2�u′k
�

2n

h2�u′k
�

2

y4

�
u ′k

y4

�
u′k
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SC �

AC �

PC �

LchC �

SchC �

The relations between the thin-lens contributions and the various
measures of the aberrations are the same as indicated in Sec. 10.8.

G1 � G5 �

G2 � G6 �

(10.8u)

G3 � G7 �

G4 � G8 �

The contributions, TSC*, CC*, etc., are determined for each element
in the system. The individual contributions are then added to get
�TSC*, �CC*, etc., and, to the extent that (1) the thin-lens fiction is
valid, and (2) the third-order aberrations represent the total aberra-
tion of the system,

�SC ≈ L′ � l ′

�CC* ≈ comaS ≈13comaT

�PC* � �AC* ≈ xs (sagittal field curvature)

�PC* � 3�AC* ≈ xt (tangential field curvature)

� �! � Petzval radius
1

�
��

�
n�

n (n � 1)
��

2
(n � 2) (n � 1)
��

2n

(2n � 1) (n � 1)
��

2n
(3n � 1) (n � 1)
��

2

(3n � 2) (n � 1)
��

2n
(2n � 1) (n � 1)
��

2

2 (n � 1) (n � 1)
��

n
n2 (n � 1)
��

2

�TSchC
��

u′k
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u′k
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≈ percentage distortion

�LchC � l ′F � l ′C

�TchC* � hF � hC

�SchC � l ′d � l ′C

The thin-lens third-order aberration expressions (which are fre-
quently called G-sums) can be used with the specific data of an opti-
cal system to determine the (approximate) aberration values.
Another usage is in design work where the curvatures and/or spac-
ings and powers of the elements are to be determined in such a way
that the aberration values are equal to some desired set of values, as
will be evident in Chap. 12. For aspheric surfaced lenses, the contri-
butions from the asphericity are calculated (by Eqs. 10.7r through
10.7y) and added to the contributions calculated for spherical sur-
faced lenses.

Equations 10.8f to 10.8l are called stop shift equations. They may
also be applied to the surface contributions (from Eqs. 10.7) to deter-
mine the third-order aberrations for a new, or changed, stop position
by setting

Q �

where y*p is the ray height of the “new” principal ray (i.e., after the
stop is shifted) and yp and y are as indicated in Sec. 10.8. Note that Q
is an invariant; thus the values for y*p, yp, and y may be taken at any
convenient surface. When the equations are used this way the
unstarred terms (SC, CC, etc.) refer to the aberrations with the stop in
the original position, while the starred terms (SC*, CC*, etc.) refer to
the aberrations with the stop in the new position. Another conse-
quence of the invariant nature of this definition of Q is the fact that
the stop shift may be applied to either the individual surface contri-
butions or to the contribution sums of the entire system or any portion
thereof.

The implications of the stop shift equations (Eqs. 10.8f through l)
are worthy of note. If all the third-order aberrations are corrected for
a given stop position, then moving the stop will not change them.
Similarly, if there is no spherical, the coma is not affected by a stop
shift. This is the case with the paraboloid mirror which, because it has
no spherical aberration, has the same amount of coma regardless of
where the stop is placed. But because it has coma, the astigmatism is
a function of the stop position.

( y*p � yp)
��

y

100 �DC*
��

h
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Example G

We will repeat Example E, assuming that the lens is thin. Since c1 �
�0.02 and c2 � �0.02, the power of the thin lens is � � (1.5�1) �
(�0.02�0.02) � �0.02. For the axial ray u � �0.1 and y � 20;
Eq. 10.8a gives u ′ � �0.3, and, since there is only one element in the 
“system,” u ′ � u ′k � �0.3. The final image distance is �20/(�0.3) �
66.6 mm and the image height corresponding to an object height of
�20 mm can be determined by h′ � hu/u ′ � �6.66 mm, or by tracing
a paraxial principal ray.

Applying Eqs. 10.8u, we find the G-functions corresponding to n � 1.5
to be

G1 � 0.5625 G5 � 1.666…

G2 � 1.0 G6 � 1.08333…

G3 � 1.375 G7 � 0.666…

G4 � 0.5833… G8 � 0.375

Thus we have the data (tabulated below for convenience) necessary
to determine the “stop in contact” aberrations.

y � �20 y2 � �400 y4 � �160,000 � 16 � 104

u ′k � �0.3 u ′k2 � �0.09

c � �0.04 c2 � 16 � 10�4 c3 � 64 � 10�6

c1 � �0.02 c1
2 � 4 � 10�4

v � �0.005 v2 � �25 � 10�6

h � �6.66… h2 � 44.44…

V � 62.5

� � �0.02

We will use the first surface versions of Eqs. 10.8m and n; the sec-
ond surface versions (data in c2 and v′) are primarily for use in ana-
lytical work with cemented doublets where it is desirable to express
the aberration of the doublet as a function of the curvature of the
cemented surface.

TSC � [0.5625 � 64 � 10�6�1.0 � 16 � 10�4 � 0.02

�1.375 � 16 � 10�4 (� 0.005) � 0.5833 � 0.04 � 4 � 10�4

� 1.666 � 0.04 � 0.02 (� 0.005) � 1.0833 � 0.04 � 25 � 10�6]

16 � 104

��
�0.3
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TSC � �5.333 � 105 [�36 � 10�6 � 32 � 10�6 � 11 � 10�6

� 9.33 � 10�6 � 6.66 � 10�6 � 1.0833 � 10�6]

� �5.333 � 105 [�10.0833 � 10�6]

� �5.3777…

CC � �6.666 � 400 [0.25 � 1.666 � 0.04 � 0.02
� 0.666 � 0.04 (�0.005) � 0.375 � 16 � 10�4]

� �2.666 � 103 [�3.33 � 10�4 � 1.333 � 10�4 � 6 � 10�4]

� �2.666 � 103 [�1.333 � 10�4]

� � 0.3555…

TAC �

� �0.1333…

TPC �

� �0.0888…

DC � 0.0

TAchC �

� �0.42666…

TchC � 0.0

The above are the third-order aberrations of our thin lens with the
stop (pupil) at the lens; these results may be compared with Example
E (where the stop was at the first surface).

However, let us assume that the stop is 50 mm to the left of the lens.
With the object height of �20 mm as before, this gives up � �20/150
� �0.13333 and yp � �20�200(�0.1333) � �6.666. Thus, Eq. 10.8e
gives Q � �0.333 and we can determine the aberrations of the lens
under these conditions from Eqs. 10.8f through l.

TSC* � �5.3777…

CC* � �0.3555 � 0.333 (�5.3777)

� �1.4370

400 � 0.02
��
62.5 � (�0.3)

44.44 � 0.02 � (�0.3)
���

2 � 1.5

44.44 � 0.02 � (�0.3)
���

2
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TAC* � �0.1333 � 2 (0.333)(0.3555) � (�5.3777) (0.333)(0.333)

� �0.4938

TPC* � �0.0888

DC* � 0 � (0.333) (�0.0888 � 0.4) � 3 (0.333)(0.333)(0.3555)

� (0.333)(0.333)(0.333) (�5.3777)

� �0.1629629 � 0.1185185 � 0.1991767

� �0.2436

TAchC* � �0.42666…

TchC* � 0 � 0.333 (�0.42666)

� �0.1422

Example H

As a final example for this chapter, we present a raytrace analysis of
an air-spaced photographic triplet lens. The constructional data shown
in Fig. 10.8 are taken from K. Pestrecov’s U.S. Patent No. 2,453,260
(1948). Although the data are for a focal length of 100, this lens is
designed for use as an 8- or 16-mm movie camera objective of short
focal length (i.e., f � 13�26 mm).

The analysis is begun by determining the size and position of the
entrance pupil. The patent gives a speed of f/2.7; thus the pupil diame-
ter is 37 units, and, if we assume the stop to be at R4, the apparent posi-
tion of the pupil is 25 units to the right of R1. For an object at infinity,
the paraxial rays necessary for the third-order aberration calculation
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Figure 10.8 Section drawing and constructional data for a triplet photographic objective
(f/2.7, focal length 100) from U.S. Patent No. 2,453,260 (1948-Pestrecov).



are represented by u � 0, y � 18.5, up � �0.25, and yp � �6.3. The
results are

efl � 100.0 �CC � �0.0017 �DC � �0.057

bfl � 79.34 �TAC � �0.070 �TAchC � �0.059

�TSC � �0.422 �TPC � �0.272 �TchC � �0.021

Next, meridional rays are traced for the axial bundle (U � 0) in C,
D, and F light. For the marginal ray Q1 � 18.5 and for the zonal ray
Q1 � 13.1. The results are plotted in Fig. 10.9; plot A shows transverse
measure and plot F longitudinal measure.

Principal rays are traced at several obliquities through the center of
the pupil (so that �Q/sin U � lpr � 25.0) and Coddington’s equations
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Figure 10.9 Aberration plots of f/2.7 triplet (see Fig. 10.8 for construc-
tional data). Plots (a), (b), (c), (d) are meridional ray intercept curves
with H (in the paraxial focal plane) as ordinates and tan U′6 as abscis-
sa. The dashed portions indicate rays cut off by vignetting. Plot (e) is
one-half of a sagittal (skew) fan, with x as ordinate. Plot (f) shows the
longitudinal spherical aberration (abscissa) as a function of the enter-
ing ray height. Plot (g) shows sagittal and tangential field curvature
(abscissa) as a function of the final image height.



are applied to determine the field curvature, which is shown in plot G
of Fig. 10.9.

To compute the data for the ray intercept curves, a fan of meridion-
al rays was traced at each obliquity. The starting data were chosen so
that one ray (principal) passed through the center of the pupil and
pairs of rays passed through the rims (Y � ±18.5), the 75 percent zones
(Y � ±13.875) and the 50 percent zones (Y � ±9.25). For example, the
starting values for Q for the bundle at �14.5° (sin U1 � �0.25) were
�6.25 for the principal ray and �11.662548 and �24.162548 for the
rays through the pupil rim. (These three rays are shown as dashed
lines in Fig. 10.8). The seven final values of H′ (in the paraxial focal
plane 79.3357 to the right of R6) are plotted against tan U′6. Note also
that the slope of the plot through the point representing the principal
ray is equal to ZT(ZT � �dH ′/d tan U ′ � Xt).

A sketch of the system with the rays drawn in (as in Fig. 10.8) will
indicate which rays do not get through the lens; in Fig. 10.9, we indi-
cate this by dashing the vignetted portion of the ray intercept curve.
We assumed a clear aperture of 37 at R1 and 32 at R6.

A sagittal fan of three rays was traced with pupil intersections z � 0,
y � 0, and x � 18.5, 13.875, and 9.25. The final values of x in the image
plane are plotted in Fig. 10.9e against the final ray direction cosine Z.
The slope of this curve through the point (0, 0) can be obtained from 
zs � �dx/d tan Uz � xs.

A very minimal raytrace analysis might consist of the following:

1. Paraxial trace and third-order aberrations.

2. Marginal and zonal axial rays in three colors.

3. Coddington’s trace at full field and 0.7 field.

4. Tangential fan of five rays (including the principal ray used in 3) at
full and 0.7 field, at least one fan in three colors.

From this, one cannot only obtain the aberration plots of Fig. 10.9,
but a number of other relationships such as:

Variation of: Spherical with obliquity

Coma with obliquity

Coma with aperture

Distortion with obliquity

Lateral color with obliquity

The completeness with which one must analyze a system varies
greatly. Systems of large aperture or field angle will require a more
complete analysis. Systems of small aperture and field may not even
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require a “zonal” analysis. If one is familiar with the general type of
system under analysis, frequently the third-order aberrations plus a
few carefully selected rays will yield an adequate picture of the system
performance. Of course, a modern computer program delivers a com-
plete analysis so easily that trying to minimize the amount of raytrac-
ing is not a very profitable way to spend one’s time.
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Exercises

Numerical exercises in optical computation tend to be excessively labo-
rious, and when mistakes are made, the result is more often discour-
agement than enlightenment. Therefore, we suggest that the reader
desirous of only a moderate amount of adventure scale the dimension-
al data of the numerical examples contained in this chapter by a con-
venient factor, say 0.5� or 2�, and repeat the computations
independently.

For those who wish a bit more exercise, the following problems are
based on the data of Example H and Fig. 10.8. The index of refraction
data are as follows:

nD nF � nC nC nF

1.617 0.01123 1.61370 1.62493
1.649 0.01920 1.64355 1.66275

1 Determine the third-order aberrations. The initial ray data and answers
are given in the second paragraph of Example H.

Optical Computation 345



2 Trace principal rays in D, C, and F light with starting data Q � �6.25,
sin U � �0.25.

ANSWER: H′D � 25.8793, H′C � 25.8720, H′F � 25.8966

3 Trace close sagittal and tangential rays from an infinitely distant object by
Coddington’s equations, using the D light principal ray of Exercise 2.

ANSWER: Zs( � Xs) � �0.9528; Zt( � Xt) � �0.4521

4 Trace a sagittal skew ray at obliquity sin U � �0.25 (direction cosine 
Y � �0.25) through the rim of the 37-diameter entrance pupil located 25 to the
right of R1.

ANSWER: Z � 0.94805 Y � 0.25941 X � �0.18416
z � 0 y � 25.8657 x � 0.0757

5 Sketch the appearance of the ray intercept curves of Fig. 10.9 (A, B, C, D,
and E) in a plane 78.94 from R6 (i.e., 0.4 inside the paraxial focus). Note that
this does not require additional raytracing.
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Image Evaluation

11.1 Introduction

In the preceding chapter we discussed the means by which ray paths
are traced through an optical system and how the numerical values of
the image aberrations may be determined. In this chapter, we will con-
sider the interpretation of the results of such optical computations.
The basic question to which we address ourselves is: “What effect does
a given amount of aberration have on the performance of the optical
system?”

We have seen that raytracing yields an incomplete picture of the
image-forming characteristics of a system, since the image formed by
a “perfect” lens or mirror is not the geometric point that raytracing
might lead us to expect, but a finite-sized diffraction pattern—the Airy
disk and the surrounding rings. For small departures from perfection
(i.e., aberrations which cause a deformation of the wave front amount-
ing to less than one or two wavelengths) it is thus appropriate to con-
sider the manner in which an aberration affects the distribution of
energy in the diffraction pattern. For larger amounts of aberration,
however, the illumination distribution as described by raytracing can
yield a quite adequate representation of the performance of the sys-
tem. Thus, it is convenient to divide our considerations into (1) the
effects of small amounts of aberration, which we treat in terms of the
wave nature of light, and (2) the effects of large amounts of aberration,
which may be treated geometrically.

Chapter
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11.2 Optical Path Difference: Focus Shift

We will begin our discussion of small amounts of aberration by deter-
mining the optical path difference (OPD) or wave-front deformation
introduced by a longitudinal shift of the reference point. Figure 11.1
shows a spherical wave front (solid line) emerging from the pupil of a
“perfect” optical system with a focus at point F. We wish to determine
the OPD with respect to a reference point at R, which is some arbitrary
distance � from F. If we construct a reference sphere (dashed), centered
on R, which coincides with the wave front at the axis, then the OPD
for a given zone (of radius Y) is the distance* from the reference sphere
to the wave front measured along the radius of the reference sphere,
as indicated in Fig. 11.1.

From the figure we can see that, for modest amounts of OPD, the
path difference is equal to the radius of the reference sphere (l � �)
minus the radius of the wave front (l) all less � cos U.

� (l � � � � cos U�l)

� � (1�cos U)

To an approximation sufficient for our purposes, we can make the
substitution

cos U ≈ 1 � 12 sin2 U

and the optical path difference resulting from a shift of the reference
point by an amount � is given by

OPD � 12 n� sin2 U (11.1)

A longitudinal shift of the reference point is equivalent to defocusing
the system; by use of Rayleigh’s quarter-wave criterion we can estab-
lish a rough allowance for the tolerable depth of focus. Setting the
OPD equal to a quarter wavelength of light and solving for the per-
missible focus shift,

Depth of focus � � ± � 2	 (f/#)2 (11.2a)

where 	 is the wavelength of light, n is the index of the final medium,
and Um is the final slope of the marginal ray through the system. Note
that Um is used because the maximum amount of OPD occurs at the
edge of the wave front. We can convert this to transverse measure by

	
��
2n sin2 Um

OPD
�

n

348 Chapter Eleven

*Times the index n of the final medium, if the final medium is not air.



multiplying by the ray slope; using sin Um as a close enough approxi-
mation for the slope, we get
Transverse 	/4 defocus,

H′ � � � 	 (f/#) (11.2b)

where NA � n sin Um and (f/#) � f-number.

11.3 Optical Path Difference: Spherical
Aberration

We begin by determining the OPD with respect to a reference sphere
centered at the paraxial focus. In Fig. 11.2, the deformed wave front is
shown as a solid line and the ray (normal to the wave front) from zone
Y intersects the axis at point M. The reference sphere, centered at P,
is shown dashed, and the OPD is, as before, the radial distance
between the two surfaces times the index. Since the wave front is
shown lagging behind the reference sphere, the sign of the OPD is
shown negative, to be consistent.

The ray is normal to the wave front and the radius is normal to the
reference sphere; thus the angle � between the surface normals is also
the angle between the surfaces, and, as indicated in the lower sketch,
the change in OPD corresponding to a small change in height dY is
given by the relation

� �
(�dOPD)
��

n dY

0.5 	
�
NA

0.5 	
��
n sin Um
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Figure 11.1 The optical path difference (OPD) introduced by
a small longitudinal displacement (�) of the reference point
is equal to the index (n) times [the radius of the reference
sphere (l � �) minus the radius of the wave front (l) minus
� cos U].



But the angular aberration � is also related to the spherical aberration
by

� � �

Combining and solving for dOPD we get

dOPD �

Now the longitudinal spherical aberration is a function of Y and can be
represented by the series

LA � aY2 � bY4 � cY6 � . . . (11.3)

Making this substitution and integrating

OPD � � �Y

0
(aY 2 � bY4 � cY6 � . . .) dY

� � � � � � . . .� �
Y

0

cY8

�
8

bY6

�
6

aY 4

�
4

n
�
l2

nY
�
l2

�Y n (LA) dY
��

l2

(LA) Y
�

l2

(LA) sin U
��

l
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Figure 11.2 The OPD (with reference to the paraxial focal point) pro-
duced by spherical aberration. The small diagram indicates the rela-
tionship � � (�1/n) dOPD/dy. In the upper sketch, it is apparent
that � � LA sin U/l.



� � � � � . . .�
� �12 n sin2 U � � � � . . .� (11.4)

Now Eq. 11.4 is the OPD with respect to the paraxial focus of the
system. It is reasonable to expect that a more desirable reference point
than the paraxial focus exists. Thus, by combining Eqs. 11.1 and 11.4,
we get

OPD � 12 n sin2 U ��� � � � � . . .� � (11.5)

which is the OPD with respect to an axial point a distance � from the
paraxial focus.

Third-order spherical aberration. In many optical systems, the spherical
aberration is almost entirely third-order; this is true for almost all sys-
tems composed of simple positive elements, and very nearly true for
many other systems. Under such circumstances, Eq. 11.3 reduces to.

LA � aY2 (11.6)

and Eq. 11.5 reduces to

OPD � 12 n sin2 U [��12 aY2] (11.7)

Now at the edge of the aperture Y � Ym and LA � LAm; substituting
these values into Eq. 11.6, we find that (for third-order spherical)

a �

and that

OPD � n sin2 U ��� LAm � �2� (11.8)

To determine the value of � which will result in the smallest amount
of OPD, we can try several values of � in Eq. 11.8 and plot the OPD for
each as a function of Y. This has been done for shifts of � � 0, 12LAm, and
LAm; the results are plotted in Fig. 11.3. It is apparent that the smallest
departure from the spherical reference surface occurs when the OPD is
zero at the margin. The corresponding shift of the reference point is
LAm/2. Therefore, from the standpoint of wave-front aberration, the best
focus is midway between the marginal and paraxial focal points.

Y
�
Ym

1
�
2

1
�
2

LAm
�
Ym

2

cY6

�
4

bY4

�
3

aY2

�
2

cY 6

�
4

bY 4

�
3

aY 2

�
2

cY 6

�
4

bY4

�
3

aY 2

�
2

�nY 2

�
2l2
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If we now substitute � � LAm/2 into Eq. 11.8, we find (by differenti-
ating with respect to Y and setting the result equal to zero) that the
maximum OPD occurs at Y � Ym �0.5� � 0.707 Ym and is given by

OPD � n sin2 Um

This is one-quarter of the OPD at the paraxial focus.
Applying Rayleigh’s criterion by setting the OPD equal to one-

quarter wavelength, we find the amount of marginal spherical aberra-
tion corresponding to this OPD is

LAm � � 16	 (f/#)2 (11.9a)

Again, making an approximate conversion to transverse aberration by
multiplying by sin Um, we get

TA m � � � 8	 (f/#) (11.9b)

Fifth-order spherical aberration. When the spherical aberration consists
of third and fifth order (and this includes the vast majority of all opti-
cal systems), we can write.

LA � aY 2 � bY 4

Substituting LA � LAm at Y � Ym and LA � LA z at Y � 0.707 Ym, we
find that the constants a and b are related to the marginal and zonal
spherical by the following expressions:

4	
�
NA

4	
��
n sin Um

4	
��
n sin2 Um

LAm�
16
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Figure 11.3 The OPD of a system with third-order spheri-
cal aberration, plotted as a function of Y for three posi-
tions of the reference point.



LA m � aYm
2 � bYm

4

LA z � �

a �

b �

The OPD is represented by truncating Eq. 11.5

OPD � n sin2 U ��� � �
and the graph of OPD versus Y is a curve of the type shown in the
upper plot of Fig. 11.4. The exact shape of the curve is, of course,
dependent on the values of a, b, and �.

The best focus occurs when

� � � � LAmax (11.10)3
�
4

�3 (4LA z�LAm)2

���
32 (LA m�2LA z)

�3a2

�
16b

bY4

�
3

aY2

�
2

1
�
2

2LAm�4LA z
��

Ym
4

4LA z�LA m��
Ym

2

bYm
4

�
4

aYm
2

�
2
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Figure 11.4 OPD vs. Y in the presence of third- and fifth-order aber-
ration. Upper: OPD is a sixth-order function of Y, its shape depend-
ing on the aberration coefficients, a and b, and the position of the
reference point (�). Middle: OPD vs. Y when � � (34)LAmax Lower:
OPD is minimized when LAm � 0 and � � (34)LAz.



since at this point the OPD is zero for three values of Y as shown in
the middle plot of Fig. 11.4. At this focus, the OPD at the margin is

OPDm � n sin2 Um � � � � (11.11)

and at the maximum (point x), which occurs at

Y � Ym ��		
the OPD is given by

OPDx � (11.12)

If the marginal spherical aberration of the system is corrected (so
that LAm � 0) then the values of OPD at the margin and at point X are
equal, as indicated in the lower plot of Fig. 11.4. This is the condition
for minimum OPD in the presence of fifth-order spherical. Then the
shift of the reference point is given by

� � 34LA z

indicating that the best focus is three-fourths of the way from the
paraxial focus to the zonal focus. The residual OPD is given by

OPDm � OPDx � (11.13)

This is one-eighth of the OPD at the paraxial focus. Equating this to
one-quarter wavelength, we find that the Rayleigh criterion allows a
residual zonal spherical of

LA z � (11.14a)

To make an approximate conversion to transverse aberration, we mul-
tiply by sin Uz, which is approximately equal to 0.7 sin Um, and we get

TAz � � (11.14b)

The Wave Aberration Polynomial

Equations 3.1 and 3.2 presented a power series expansion which
expressed the transverse ray aberration as a function of h, s, and � (see
Fig. 3.1 for the meaning of these terms.) A similar expression can be
derived for the wave-front aberration, or OPD.

4.2	
�
NA

4.2	
��
n sin Um

6	
��
n sin2 Um

nLA z sin2 Um��
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na3 sin2 Um��
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OPD � A′1s2 � A′2sh cos �

� B′1s4 � B′2s3h cos � � B′3s2h2 cos2 � � B′4 s2h2 � B′5 sh3 cos �

� C′1s6 � C′2s5h cos � � C′4 s4h2 � C′5 s4h2 cos2 � � C′7 s3h3 cos �

� C′8 s3h3 cos3 � � C′10 s2h4 � C′11 s2h4 cos2 � � C′12 sh5 cos �

� D′1 s8 � . . .

Note that although the constants here correspond to those in Eqs. 3.1
and 3.2, they are not numerically the same. However, the expressions
are related by

y′ � TAy � and x′ � TAx �

where l is the pupil-to-image distance and n is the image space index.
Note that the exponent of the semiaperture term s is larger by one in
the wave-front expression than in the ray-intercept equations. This
equation allows us to determine the shape of the wave front for any
combination of aberrations.

11.4 Aberration Tolerances

The preceding sections form a basis for the establishment of what are
usually referred to as aberration tolerances. We should note, however,
that the use of the word “tolerance” in this connection does not carry
the same go, no-go connotation that it does in matters mechanical,
where parts may suddenly cease to fit or function when tolerances are
exceeded. Any amount of aberration degrades the image; a larger
amount simply degrades it more. Thus, it might be more accurate to
call this section “Aberration Allowances.”

The Rayleigh criterion, or limit, allows not more than one-quarter
wavelength of OPD over the wave front with respect to a reference
sphere about a selected image point in order that the image may be
“sensibly” perfect. For convenience, we will use the term one Rayleigh
limit to mean an OPD of one-quarter wavelength. We have previously
noted that the image formed by a perfect lens is a diffraction pattern
which contains 84 percent of its energy in a central disk, the remain-
ing 16 percent being distributed in the rings of the pattern. When the
OPD is less than several Rayleigh limits, the size of the central disk is
basically unchanged, but a noticeable shift of energy from the central
disk to the rings takes place.

RMS OPD

The preceding discussions have measured the OPD in terms of its
maximum departure from the reference sphere. This is often referred

∂OPD
�

∂x
l

�
n

∂OPD
�

∂y
l

�
n
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to as peak-to-peak or peak-to-valley (P-V) OPD. It correlates well to
image quality when the shape of the wave front is relatively smooth.
However, it is inadequate if the wave front is abruptly irregular. In
such circumstances the RMS OPD is a better measure of the effect of
the wave-front deformation. RMS stands for “root mean square,” and
is the square root of the average (or mean) of the squares of all the
OPD values sampled over the full aperture of the system. Consider, for
example, an otherwise perfect optical system with a bump on one sur-
face. If the bump covers only a very small area, its effect on the image
will be correspondingly small, even if the P-V OPD of the bump in the
wave front is quite large. In this sort of case the RMS OPD would be
very small and would represent the effect of the bump on the image
much more accurately than the P-V OPD would. The relationship
between RMS OPD and P-V OPD for the case of the very smooth wave-
front deformation caused by defocusing is

RMS OPD �

For a less smooth wave-front deformation the denominator in this
expression will be larger; this is especially true for deformations
caused by high-order aberrations or by fabrication errors. Most work-
ers assume a denominator of 4 or 5 in the above expression when 
dealing with random errors. Thus the Rayleigh quarter-wave criterion
corresponds to an RMS OPD of a fourteenth- or a twentieth-wave. The
fact that a twentieth-wave sounds much more impressive than a quar-
ter-wave may have contributed to the popularity of RMS OPD among
suppliers of optical systems.

Strehl Ratio

The Strehl ratio is the illumination at the center of the Airy disk for
an aberrated system expressed as a fraction of the corresponding illu-
mination for a perfect system, as shown in Fig. 11.5. It is a good mea-
sure of image quality when the optical system is well corrected. A
Strehl ratio of 80 percent corresponds to a quarter-wave P-V OPD
(exactly for defocus, approximately for most aberrations.) For modest
amounts of OPD, the relationship between the Strehl ratio and the
RMS OPD is well approximated by

Strehl ratio � e� (2��)2

where � is the RMS OPD in waves.
For various amounts of OPD, the several measures of image quality

are related as indicated in the following table. It assumes that the
OPD is due to defocusing. The P-V OPD is given in both Rayleigh lim-

P-V OPD
��

3.5
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its (RL) and wavelengths. The Marechal criterion for image quality is
a Strehl ratio of 0.80, which corresponds to the Rayleigh limit for defo-
cusing but is otherwise more general than the quarter-wave limit.

Thus it is apparent that an amount of aberration corresponding to one
Rayleigh limit does cause a small but appreciable change in the charac-
teristics of the image. For most systems, however, one may assume that,
if the aberrations are reduced to the Rayleigh limit, the performance
will be first class and that it will take a determined investigator a con-
siderable amount of effort to detect the resultant difference in a perfor-
mance. An occasional system does require correction to a fraction of the
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Figure 11.5

Relation of Image Quality Measures to OPD
% energy in

P-V OPD RMS OPD Strehl ratio Airy disk Rings

0.0 0.0 1.00 84 16
0.25RL � 	/16 0.018	 0.99 83 17
0.5RL � 	/8 0.036	 0.95 80 20
1.0RL � 	/4 0.07	 0.80 68 32
2.0RL � 	/2 0.14	 0.4* 40 60
3.0RL � 0.75	 0.21	 0.1* 20 80
4.0RL�	 0.29	 0.0* 10 90

*The smaller values of the Strehl ratio do not correlate well with image quality.



Rayleigh limit. Microscopes and telescopes are usually corrected to meet
or better the Rayleigh criterion, on the axis at least; photographic lens-
es approach this level of correction only infrequently.

The following tabulation indicates the amount of aberration corre-
sponding to one Rayleigh limit (OPD � 	/4) when the reference point
is chosen to minimize the P-V OPD.
Out of Focus

Longitudinal:


l′ � (11.15)

Transverse:

H′ �

Third-Order Marginal Spherical
Longitudinal:

LAm � (11.16)

Transverse:

TAm �

Zonal Residual Spherical (LAm � 0)
Longitudinal:

LAz � (11.17)

Transverse:

TAz �

Tangential Coma

ComaT � (11.18)

Chromatic aberration
Axial color:

LAch � L′F � L′C � (11.19)

TAch �

Lateral color:

TchA � H′F � H′C � (11.20)
0.5	
�
NA

	
�
NA

	
��
n sin2 Um

1.5	
�
NA

4.2	
�
NA

6	
��
n sin2 Um

4	
�
NA

4	
��
n sin2 Um

0.5	
�
NA

	
��
2n sin2 Um
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The symbols are 	, the wavelength of light; n, the index of the medium
in which the image is formed; Um, the slope angle of the marginal axi-
al ray at the axial image; H, the image height; NA � n sin Um, the
numerical aperture.

The allowance for longitudinal color is derived from the out-of-focus
allowance; if the reference point is midway between the long- and
short-wavelength focal points, it is apparent that they may be sepa-
rated by twice the out-of-focus allowance before the Rayleigh limit is
exceeded. For the chromatic aberrations these amounts are less sig-
nificant in terms of their effect on the image quality (e.g., MTF) than
are the quarter-wave amounts of the monochromatic aberrations. This
is because only the extreme wavelengths (e.g., C and F) are a quarter-
wave off the nominal wage front; all the other wavelengths are at less
than a quarter-wave. Since for most systems the spectral response is
at least somewhat peaked up for the central wavelengths, this means
that for chromatic aberrations in amounts corresponding to Eqs. 11.19
and 11.20, more than half of the effective illumination has less than an
eighth-wave OPD. Thus for ordinary chromatic one can assume that
1.8 to 2.5 (depending on whether the system spectral response is flat
or peaked) times the amounts indicated above will produce about the
same effect on the image as the quarter-wave amounts for the mono-
chromatic aberrations. If the chromatic is in the form of secondary
spectrum, factors of 2.5 to 4.5 are appropriate. Note that the human
visual response is quite peaked and factors approaching the larger
ones above are suitable for visual systems.

The allowance for coma is frequently exceeded, since it is extremely
difficult to correct a system to this level of quality over an appreciable
field. The out-of-focus allowance is, of course, applicable to curvature
of field, and values of zs and zt (xs and xt) should (ideally, at least) be
less than twice this amount. However, it is a rare system that can be
corrected to this level, and most optical systems which cover an
extended field exceed this allowance many times over.

Example A

For a visual optical system with a relative aperture of f/5, sin Um �
0.10 and 	 � 0.55 �m � 0.00055 mm. The aberration allowances cor-
responding to one-quarter wave OPD are thus given by:

Out of focus � ± � ±0.0275 mm

Marginal spherical � ± � ±0.22 mm4 (0.00055) 
��

(0.1)2

0.00055
�
2 (0.1)2
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Zonal spherical � ± � ±0.33 mm (LAm � 0)

Tangential coma � ± � ±0.00825 mm

Axial chromatic � ± � ±0.055 mm (� ±0.13 mm realistically)

11.5 Image Energy Distribution (Geometric)

When the aberrations exceed the Rayleigh limit by several times, dif-
fraction effects become relatively insignificant, and the results of geo-
metric raytracing may be used to predict the appearance of a point
image with a fair degree of accuracy. This can be done by dividing the
entrance pupil of the optical system into a large number of equal areas
and tracing a ray from the object point through the center of each of
the small areas. The intersection of each ray with the selected image
plane is plotted, and since each ray represents the same fraction of the
total energy in the image, the density of the points in the plot is a mea-
sure of the power density (irradiance, illuminance) in the image.
Obviously the more rays that are traced, the more accurate the repre-
sentation of the geometrical image becomes. A ray intercept plot of this
type is called a spot diagram. Figure 11.6 indicates several methods of
placing the rays in the entrance pupil and shows an example of a spot
diagram. The rectangular ray placement is the most used, being the
easiest to do and also having utility in OPD and MTF calculations.

The preparation of a spot diagram obviously entails a great amount
of raytracing. As pointed out in Section 10.4, the rays on each side of
the meridional plane are mirror images of each other; this reduces the
necessary raytracing by 50 percent. The number of rays to be traced
can be reduced markedly by an interpolation process. To produce a
spot diagram which faithfully reproduces the image, several hundred
ray intersections are required. However, if 20 or 30 rays are traced, it
is possible to fit an interpolation equation to their intercept coordi-
nates so that the required (larger) number of points can be computed
from the equation. Equations such as Eqs. 3.1 and 3.2 are suitable for
this purpose. However, the high computation speed now available in
most desktop computers makes this unnecessary, and most spot dia-
grams are made by simply tracing several hundred rays through the
system.

For an accurate analysis, the effects of wavelength on the energy
distribution must also be included. This is accomplished by tracing
additional rays at different wavelengths; the variation of system 

0.00055
�

(0.1)2

1.5 (0.00055) 
��

0.1

6 (0.00055) 
��

(0.1)2
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sensitivity with wavelength may be taken into account by tracing few-
er rays in the less-sensitive wavelengths or by an appropriate weight-
ing scheme. For devices with appreciable fields of view, spot diagrams
must also be prepared for several obliquities.

Focusing must also be taken into account. Since it is difficult to pre-
dict in advance the exact position of the plane of best focus, spot dia-
grams are often prepared for several positions of the image plane and
the best is selected. One way of accomplishing this is to hold the final
ray data (intercepts and directions) in the computer memory and to
calculate a new set of intercepts for each focus shift.

11.6 Spread Functions—Point and Line

The image of a point (whether the data are derived from a spot dia-
gram or from an exact diffraction calculation) can be considered 
from a three-dimensional point of view to be a sort of illumination 
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Figure 11.6 The upper sketches show the placement of rays in the
entrance pupil so that each ray “represents” an equal area. Shown
below are a spot diagram (for a system with pure coma) and the line
spread functions (below and to the right) obtained by counting the
number of points between parallel lines separated by a small dis-
tance, 
Y or 
Z.



mountain, as sketched in Fig. 11.7. The point spread function can be
described two dimensionally by a series of cross sections through the
three-dimensional solid. The solid corresponding to a line image is also
shown in Fig. 11.7. The cross section of the line solid is called the line
spread function and can be obtained by integrating the point solid
along sections parallel to the direction of the line, since the line image
is simply the summation of an infinite number of point images along
its length. The lower part of Fig. 11.6 shows a spot diagram for a sys-
tem with pure third-order coma and the line spread functions derived
from it.

A knife-edge trace is a plot of the energy which passes a knife edge
versus the position of the knife edge as the knife is scanned laterally
through the image of a point. The slope, or derivative, of the knife-edge
scan is equal to the value of the line spread function. This relationship
is often used to measure the line spread function in order to measure
the MTF (see Sec. 11.8).

11.7 Geometric Spot Size Due to Spherical
Aberration

Third-order spherical aberration

The meridional spread of an image can, of course, be read directly from
a ray intercept curve (see Fig. 3.24, for example). For points on the
axis, the image blur is symmetrical and it is possible to obtain simple
expressions for the size of the blur spot.

Figure 11.8 shows the ray paths near the image plane of a system
afflicted with third-order spherical aberration. It is apparent that the
minimum diameter blur spot for this system occurs at a point between
the marginal focus and the paraxial focus. This point is three-quarters
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Figure 11.7 The energy distribution in the image of a point (a) and a
line (b). The line image (b) is generated by summing an infinite num-
ber of point images (a) along its length. The line spread function is
the cross section of (b).



of the way from the paraxial focus to the marginal focus, and the diam-
eter of the spot at this point is given by:

B � 12LAm tan Um
(11.21)

� 12TA m

Fifth-order spherical aberration

When the spherical aberration consists of both third and fifth orders,
the situation is more complex. From a geometric standpoint, the min-
imum spot size can be shown to occur when the marginal spherical is
equal to two-thirds of the (0.707) zonal spherical, or
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Figure 11.8 The upper figure shows the ray paths near the focus of a system with third-
order spherical aberration. The smallest blur spot occurs at 0.75LAm from the paraxial
focus. The lower figure is a ray intercept curve (H′ vs. tan U′) for the same case; the slope
of the dashed lines (dH′/d tan U′) equals 0.75LAm and their separation indicates the
diameter of the blur spot.



LAz � 1.5LAm

and LA � zero at y � 1.12Ym. For most systems, this means that both
LAm and LAz are undercorrected when the minimum geometric spot
size is desired.

Then the “best” focus occurs at

� � 1.25LAm � 0.83LAz

and the size of the blur spot is

B � 12LAm tan Um
(11.22)

� 13LA z tan Um

However, if the marginal spherical is corrected to zero, then the
“best” geometric focus is at

� � 0.42LA z

and for small values of U, the minimum blur spot size is

B � 0.84LA z tan Um (11.23)

The “best” focus positions described above are not necessarily those
one would select visually, and the reader may have noticed that they
differ from those selected on the basis of OPD in Sec. 11.3. Figure 11.9
shows a ray intercept curve for fifth-order spherical with the margin-
al spherical corrected to zero. The slope of the two solid lines indicates
the amount of focus shift required to minimize the blur spot.
(Remember that the slope 
H/
 tan U is equivalent to a focus shift,
and that the vertical separation of the lines indicates the size of the
blur.) However, the dashed pair of lines (which enclose the ray inter-
cepts from about 80 percent of the aperture) indicate a focus position
at which there is a much higher concentration of light within a much
smaller spot, and this is usually the preferred focus, even though the
total spread of the image is greater by a factor of almost 2.

The concept of minimum blur size is little used in optical systems for
visual or photographic work, since the minimum geometric blur posi-
tion is seldom, if ever, chosen as the focus. However, in systems which
use photodetectors, one frequently wishes to determine the smallest
detector that will collect all the energy in the image. Under such cir-
cumstances, the blur spot sizes given by Eqs. 11.21, 11.22, and 11.23
are extremely useful; in Chap. 13, a number of very convenient equa-
tions are presented which make use of this concept to predict the per-
formance of several simple optical systems which are frequently used
in conjunction with photodetectors. The geometric spot minimum is
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often a consideration when a system’s performance is well below that
of a “diffraction-limited” system.

Example B

A visual system, working at f/5 (sin Um � 0.1), which has an under-
corrected third-order longitudinal spherical aberration of 0.22 mm,
will have its minimum diameter blur spot 0.75 � 0.22 � 0.165 mm
ahead of the paraxial focus, and by Eq. 11.21 the size of this blur spot
will be equal to

B � 12 � 0.22 � 0.1005 � 0.011 mm

It is interesting to note that on the basis of the OPD analysis, the best
focus should occur 0.5 � 0.22 � 0.11 mm ahead of the paraxial focus and
that the diameter of the central disk of the Airy pattern is equal to

� � 0.0066 mm

This central disk should contain about 68 percent of the energy in the
image, since a marginal spherical of 0.22 mm is equal to just one
Rayleigh limit (as shown in Example A).

If an f/5 system has third- and fifth-order spherical with a corrected
marginal and a zonal residual of 0.33 mm (again in longitudinal mea-
sure), the smallest geometric spot size would be found at about 0.42 �
0.33 � 0.14 mm from the paraxial focus and the spot size would be

B � 0.84 � 0.33 � 0.1005 � 0.028 mm

Here the comparison with the OPD analysis is less fortuitous. The
zonal spherical of 0.33 mm is again equivalent to one Rayleigh limit;
we would expect the central disk of the diffraction pattern to be 0.0066

1.22 (0.00055) 
��

0.1
1.22	
�
n sin U

Image Evaluation 365

Figure 11.9 The image blur spot size for third- and fifth-order spherical aber-
ration, balanced for LAm � 0, illustrating the effects of various focus settings.



mm as above, and the best focus to be about 0.75 � 0.33 � 0.25 mm
from the paraxial focus. The agreement with geometry is somewhat
better if we use the focus indicated by the dashed lines of Fig. 11.9; the
position of “best focus” is almost exactly the same as the OPD best
focus and the diameter of the intense center spot of the geometric pat-
tern is to the order of 0.01 mm.

11.8 The Modulation Transfer Function

A type of target commonly used to test the performance of an optical
system consists of a series of alternating light and dark bars of equal
width, as indicated in Fig. 11.10a. Several sets of patterns of different
spacings are usually imaged by the system under test and the finest
set in which the line structure can be discerned is considered to be the
limit of resolution of the system, which is expressed as a certain num-
ber of lines per millimeter.* When a pattern of this sort is imaged by
an optical system, each geometric line (i.e., of infinitesimal width) in
the object is imaged as a blurred line, whose cross section is the line
spread function. Figure 11.10b indicates a cross section of the bright-
ness of the bar object, and Fig. 11.10c shows how the image spread
function “rounds off” the “corners” of the image. In Fig. 11.10d, the
effect of the image blur on progressively finer patterns is indicated. It
is apparent that when the illumination contrast in the image is less
than the smallest amount that the system (e.g., the eye, film, or pho-
todetector) can detect, the pattern can no longer be “resolved.”

If we express the contrast in the image as a “modulation,” given by
the equation

Modulation �

(where max. and min. are the image illumination levels as indicated in
Fig. 11.10d), we can plot the modulation as a function of the number of
lines per millimeter in the image, as indicated in Fig. 11.11a. The
intersection of the modulation function line with a line representing
the smallest amount of modulation which the system sensor can detect
will give the limiting resolution of the system. The curve indicating the
smallest amount of modulation detectable by a system or sensor (i.e.,
the threshold) is often called an AIM curve, where the initials stand for
the aerial image modulation required to produce a response in the sys-

max. � min.
��
max. � min.
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*Note that in optical work the convention is to consider a “line” to consist of one light
bar and one dark bar, i.e., one cycle. In television parlance, both light and dark lines are
counted. Thus, 10 “optical” lines indicate 10 light and 10 dark lines, whereas 10 “televi-
sion” lines indicate 5 light and 5 dark lines. To avoid confusion, “optical” lines are fre-
quently referred to as line pairs, e.g., 10 line pairs per millimeter.



tem or sensor. The response characteristics of the eye, films, image
tubes, CCDs, etc., are appropriately described by an AIM curve. Note
that the modulation threshold usually rises with spatial frequency,
although there are exceptions. Figure 5.4 is effectively an AIM curve
for the eye; note that at very low angular frequencies the contrast
threshold of the eye rises (for physiologic reasons).

It should be apparent that the limiting resolution does not fully
describe the performance of the system. Figure 11.11b shows two mod-
ulation plots with the same limiting resolution, but with quite differ-
ent performances. The plot with the greater modulation at the lower
frequencies is obviously superior, since it will produce crisper, more
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Figure 11.10 The imagery of a bar target. (a) A typical bar tar-
get used in testing optical systems consists of alternating light
and dark bars. If the pattern has a frequency of N lines per
millimeter, then it has a period of 1/N millimeters, as indicat-
ed. (b) A plot of the brightness of (a) is a square wave. (c) When
an image is formed, each point is imaged as a blur, with an
illumination distribution described by the spread function.
The image then consists of the summation of all the spread
functions. (d) As the test pattern is made finer, the contrast
between the light and dark areas of the image is reduced.



contrasty images. Unfortunately, the type of choice one is usually faced
with in deciding between two systems is less obvious. Consider Fig.
11.11c, where one system shows high limiting resolution and the oth-
er shows high contrast at low target frequencies. In cases of this type,
the decision must be based on the relative importance of contrast ver-
sus resolution in the function of the system.*

The preceding discussion has been based on patterns whose bright-
ness distribution is a “square wave” (Fig. 11.10b) and whose image
illumination distribution is distorted or “rounded off” by characteris-
tics of the optical system, as indicated in Fig. 11.10d. However, if the
object pattern brightness distribution is in the form of a sine wave, the
distribution in the image is also described by a sine wave, regardless
of the shape of the spread function. This fact has led to the widespread
use of the modulation transfer function to describe the performance of
a lens system. The modulation transfer function is the ratio of the
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*The Strehl definition is the ratio of the light intensity at the peak of the diffraction
pattern of an aberrated image to that at the peak of an aberration-free image, and is one
of the many criteria that have been proposed for image evaluation. It can be computed
by calculating the volume under the (three-dimensional) modulation transfer function
and dividing by the volume under the curve for an aberration-free lens (Sec. 11.10). A
similar criterion for quick general evaluation of image quality is the normalized area
under the modulation transfer curve.

Figure 11.11 (a) The image mod-
ulation can be be plotted as a
function of the frequency of the
test pattern. When the modula-
tion drops below the minimum
that can be detected, the target
is not resolved. (b) The system
represented by (a) will produce a
superior image, although both
(a) and (b) have the same limit-
ing resolution.



modulation in the image to that in the object as a function of the fre-
quency (cycles per unit of length) of the sine-wave pattern.

MTF (v) �

A plot of MTF against frequency v is thus an almost universally
applicable measure of the performance of an image-forming system
and has been applied not only to lenses but to films, phosphors, image
tubes, the eye, and even to complete systems such as camera-carrying
aircraft.

One particular advantage of the MTF is that it can be cascaded by
simply multiplying the MTFs of two or more components to obtain the
MTF of the combination. For example, if a camera lens with an MTF
of 0.5 at 20 cycles per millimeter is used with a film with an MTF of
0.7 at this frequency, the combination will have an MTF of 0.5 � 0.7 �
0.35. If the object to be photographed with this camera has a contrast
(modulation) of 0.1, then the image modulation is 0.1 � 0.35 � 0.035,
close to the limit of visual detection.

One should note, however, that MTFs do not cascade between opti-
cal components which are directly coherently “connected,” i.e., lenses
which are not separated by a diffuser of some sort. This is because the
aberrations of one component may compensate for the aberrations in
another, and thus produce an image quality for the combination which
is superior to that of either component. Any “corrected” optical system
illustrates this point.

In the past, the MTF has been referred to as frequency response, sine
wave response, or contrast transfer function.

If we assume an object consisting of alternating light and dark bands,
the brightness (luminance, radiance) of which varies according to a
cosine (or sine) function, as indicated by the upper part of Fig. 11.12, the
distribution of brightness can be expressed mathematically as

G (x) � b0 � b1 cos (2� vx) (11.24)

where v is the frequency of the brightness variation in cycles per unit
length, (b0 � b1) is the maximum brightness, (b0 � b1) is the minimum
brightness, and x is the spatial coordinate perpendicular to the bands.
The modulation of this pattern is then

M0 � � (11.25)

When this line pattern is imaged by an optical system, each point in
the object will be imaged as a blur. The energy distribution within this
blur will depend on the relative aperture of the system and the aber-
rations present. Since we are dealing with a linear object, the image of

b1
�
b0

(b0 � b1) � (b0 � b1)
��� 
(b0 � b1) � (b0 � b1)

Mi�
Mo
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Figure 11.12 Convolution of the object brightness distribution func-
tion G(x) with the line spread function A(�). (a) The object function,
G(x) � b0 � b1 cos (2�vx), plotted against x. (b) The line spread func-
tion A(�). Note the asymmetry. (c) Illustrating the manner in which
G(x) is modified by A(�). A point (or more accurately, a line element)
at x0 is imaged by the system as G(x0) times A(�). Similarly at x0 �
�1, the image of the line element is described by A(�)G(x0 � �1). Thus
the image function at a given x has a value equal to the summation
of the contributions from all the points whose spread-out images
reach x. (d) The image function F(x) � ∫A(�)G(x � �) d� has been
shifted by � and has a modulation Mi � M0|A(v)|.



each line element can be described by the line spread function (Sec.
11.5, Fig. 11.7) indicated in Fig. 11.12 as A(�). We now assume (for con-
venience) that the dimensions x and (1/v) in Eq. 11.24 are the corre-
sponding dimensions in the image. It is apparent that the image
energy distribution at a position x is the summation of the product of
G(x) and A(�) and can be expressed as

F(x) � ∫ A(�) G (x��) d� (11.26)

Combining Eqs. 11.24 and 11.26, we get

F(x) � b0∫ A(�) d� � b1 ∫ A(�) cos [2�v (x��) ] d� (11.27)

After normalizing by dividing by ∫ A(�) d�, Eq. 11.27 can be trans-
formed to

F(x) � b0 � b1 |A(v)| cos (2�vx��)

� b0 � b1Ac(v) cos (2�vx) � b1As(v) sin (2�vx) (11.28)

where

|A(v)| � [Ac
2(v) � As

2(v) ]1/2 (11.29)

and

Ac(v) � (11.30)

As(v) � (11.31)

cos � � (11.32)

tan � � (11.33)

Note that the resulting image energy distribution F(x) is still modu-
lated by a cosine function of the same frequency v, demonstrating that
a cosine distribution object is always imaged as a cosine distribution
image. If the line spread function A(�) is asymmetrical, a phase shift �
is introduced. This is a lateral shift of the location of the image (at this
frequency).

The modulation in the image is given by

Mi � |A(v)| � M0 |A(v)| (11.34)

and |A(v)| is the modulation transfer function.

b1
�
b0

As(v)
�
Ac(v)

Ac(v)
�
|A(v)|

∫ A(�) sin (2�v�) d�
��

∫ A(�) d�

∫ A(�) cos (2�v�) d�
��

∫ A(�) d�
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MTF(v) � |A(v)| �

The optical transfer function (OTF) is the complex function which
describes this process. It is a function of the spatial frequency v of the
sine-wave pattern. The real part of the OTF is the modulation trans-
fer function (MTF) and the imaginary part is the phase transfer func-
tion (PTF). If the PTF is linear with frequency, it is, of course, just a
simple lateral displacement of the image (as, for example, distortion),
but if it is nonlinear, it can have an effect on the image quality. A phase
shift of 180° is a reversal of contrast, in that the image pattern is light
where it should be dark, and vice versa. See Fig. 15.24 for example.

11.9 Computation of the Modulation
Transfer Function

We will illustrate the computation of the MTF by a grossly simplified
and abbreviated example. In actual practice, a much larger number of
points must be used in the computation if accurate results are to be
obtained.

We assume that a spot diagram has been prepared from raytrace
data as shown in Fig. 11.13a. The line spread function is determined
by integrating the spot diagram in one direction; in practice, one
assumes an increment 
x and counts all the spots between the lines
bounding the increment. A normalized plot of Nx against x then repre-
sents the line spread function A(x). (Note that the point spread func-
tion could be derived from a diffraction calculation if the diffraction
MTF were desired.)

Since real spread functions are rarely (if ever) represented by ordi-
nary analytic functions, we cannot use Eqs. 11.30 and 11.31 in their
integral form. A close approximation (which lends itself nicely to elec-
tronic computer usage) is given by the equivalent summation equa-
tions,

Ac(v) � (11.35)

As(v) � (11.36)

As a numerical example, we will determine the value of the MTF for
a frequency of v � 0.1, i.e., one-tenth cycle per unit length. The values
of A(x), the line spread function, which we will use are given in line 2
of Fig. 11.14 for various values of x. Line 4 of the table gives the val-
ues of 2�vx for these same values of x, and Lines 5 and 6 give the val-
ues of cos (2�vx) and sin (2�vx) for each point.

∑A(x) sin (2�vx) 
x
���

∑A(x) 
x

∑A(x) cos (2�vx) 
x
���

∑A(x) 
x

Mi
�
M0
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Figure 11.13 The calculation of the modulation transfer factor
for a given frequency, v. (a) The spot diagram is summed in
one direction by counting the number of spots (ray intersec-
tions) in each increment, 
x. (b) The number of spots is plot-
ted against x to get the line spread function A(x). A(x) is
usually normalized to peak at unity. (c) A(x) cos (2�vx) and
A(x) sin (2�vx) are generated by point-for-point multiplication
of A(x) by the trigonometric functions. Then ∫A(x) cos (2�vx) dx
and ∫A(x) sin (2�vx) dx are the areas under their respective
curves (remembering that area below the x-axis is negative).
Similarly ∫A(x) dx is the area under the curve of A(x) vs. x.
These values are used in Eqs. 11.29 through 11.34 to get the
MTF and phase shift � for the frequency v.



F
ig

u
re

 1
1.

14
N

u
m

er
ic

al
 c

om
pu

ta
ti

on
 o

f 
th

e 
m

od
u

la
ti

on
 t

ra
n

sf
er

 f
u

n
ct

io
n

 f
or

 a
 f

re
qu

en
cy

 o
f 

v
�

0.
1 

cy
cl

es
 p

er
 m

il
li

m
et

er
, f

ro
m

 t
h

e 
li

n
e 

sp
re

ad
 f

u
n

ct
io

n
 (

x)
 g

iv
en

 i
n

 l
in

e 
2.

374



Now Lines 7 and 8 give A(x) cos (2�vx) and A(x) sin (2�vx), respec-
tively. Since 
x is equal to 1.0 in this example, we can obtain the
required summations for Eqs. 11.35 and 11.36 by summing across lines
2, 7, and 8, giving us

A(x) 
x � �5.10

A(x) cos (2�vx) 
x � �2.51236

A(x) sin (2�vx) 
x � 0.0

Note that the last value is a foregone conclusion when A(x) is a sym-
metrical function of x, since the positive and negative values of the
sine function on either side of x � 0 cause one side to cancel the other
when summed. Thus, when A(x) is symmetrical, the labor of the cal-
culation can be reduced by a factor of 4, since only one-half of the
cosine function needs to be evaluated.

Inserting the above values into Eqs. 11.35 and 11.36, we find that

Ac(0.1) � � �0.4926

As(0.1) � � 0.0

and that by Eqs. 11.29 and 11.33

MTF(0.1) � |A(0.1)| � (0.4932 � 02)1/2 � 0.493

tan � � � 0.0

Thus, for a frequency v � 0.1 cycles per unit length, we find a mod-
ulation transfer factor of 49 percent. This calculation can be repeated
for several values of v, and a plot of the MTF against frequency, simi-
lar in appearance to those of Fig. 11.11, can be prepared from the
results. As mentioned above, a much smaller value of 
x must be used
if accurate results are to be obtained.

Square-wave vs. sine-wave targets

Once the MTF has been determined (plotted) for a range of frequen-
cies, it is possible to determine an analogous function for the modula-
tion transfer of a square wave pattern, i.e., a bar target of the type
shown in Fig. 11.10. This is done by resolving the square wave into its
Fourier components and taking the sine wave response to each com-
ponent. Thus, for a given frequency v, the square wave modulation
transfer S(v) is given by the following equation [in which MTF(v) is
written M(v) for clarity].

0
��

�2.512

0.0
�
5.1

2.51236
�

5.1
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S(v) � �M(v) � � � � . . .� (11.37a)

The inverse of this function is

M(v) � �S(v) � � � �. . .� (11.37b)

Practicle resolution considerations

A rough indication of the practical meaning of resolution can be gained
from the following, which lists the resolution required to photograph
printed or typewritten copy.

Excellent reproduction (reproduces serifs, etc.) requires 8 resolution
line pairs per the height of a lowercase letter e.

Legible (easily) reproduction requires 5 line pairs per letter height.

Decipherable (e, c, o partly closed) requires 3 line pairs per letter
height.

Point sizes of type (where P is the point size) are

Height of an upper case letter � 0.22P mm � 0.0085P in

Height of a lower case letter � 0.15P mm � 0.006P in

The correlation between resolution in cycles per minimum dimen-
sion (height, length of military targets) and certain functions (often
referred to as Johnson’s law) is

Detect 1.0 line pairs per dimension

Orient 1.4 line pairs per dimension

Aim 2.5 line pairs per dimension

Recognize 4.0 line pairs per dimension

Identify 6–8 line pairs per dimension

Recognize with 50% accuracy 7.5 line pairs per height

Recognize with 90% accuracy 12. line pairs per height

11.10 Special Modulation Transfer
Functions: Diffraction-Limited Systems

Section 11.9 discussed MTF in geometric terms; the spot-diagram tech-
niques set forth there are applicable only when the aberrations are
large. When they are small, the interactions between the diffraction

S(7v)
�

7
S(5v)
�

5
S(3v)
�

3
�
�
4

M(7v)
�

7
M(5v)
�

5
M(3v)
�

3
4
�
�
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effects of the system aperture and the aberrations become very com-
plex. If there are no aberrations present, the MTF of a system is relat-
ed to the size of the diffraction pattern (which is a function of the
numerical aperture of the system and the wavelength of the light
used). For a “perfect” optical system, the MTF is

MTF(v) � (� � cos � sin �) (11.38)

where

� � cos�1 � �
and v is the frequency in cycles per millimeter, 	 is the wavelength in
millimeters, NA is the numerical aperture (n′ sin U′), and cos�1 (x)
means the angle whose cosine is x.*

It is apparent that MTF(v) is equal to zero when � is zero; thus, the
“limiting resolution” for an aberration-free system, often called the
cutoff frequency, is

v0 � � (11.39)

where 	 is in millimeters, f/# is the relative aperture of the system, and
v0 is in cycles per millimeter. Notice that an optical system is a low-
pass filter which cannot transmit information at a higher spatial fre-
quency than the cutoff frequency v0.

For an afocal system (or one with the image at infinity), the cutoff
frequency is given by

v0 � D/	 cycles/radian

A plot of Eq. 11.38 is shown in Fig. 11.15; the frequency scale is in
terms of v0, the limiting frequency given by Eq. 11.39. It should be not-
ed that for ordinary systems, this level of performance cannot be
exceeded. A geometric MTF curve derived from the raytrace data (and
neglecting diffraction) of a well-corrected lens will sometimes exceed
the values of Fig. 11.15; such results are, of course, incorrect and
derive from the fact that the light ray concept only partially describes

1
�
	 (f/#)

2NA
�

	

	v
�
2NA

2
�
�

Image Evaluation 377

*Equation 11.38 applies to uniformly illuminated and transmitting circular apertures.
For apertures of any other shape, the diffraction MTF is equal to the (normalized) area
common to the aperture and the aperture displaced. Equation 11.38 is thus the (nor-
malized) area common to two circles of radius R, as their centers are separated by an
amount equal to 2vR/v0. For a rectangular aperture the plot of MTF would thus be a
straight line. The cutoff frequency v0 is computed from Eq. 11.39 in each case using the
aperture size (i.e., the f/# or NA) in the direction of the resolution.
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Figure 11.15 The modulation transfer function of an aberration-
free system (solid line). Note that frequency is expressed as a
fraction of the cutoff frequency. The dashed line is the modula-
tion factor for a square wave (bar) target. Both curves are based
on diffraction effects and assume a system with a uniformly
transmitting circular aperture.

Figure 11.16 The effect of defocusing on the modulation
transfer function of an aberration-free system.
(a) In focus OPD � 0.0
(b) Defocus � 	/(2n sin2 U) OPD � 	/4
(c) Defocus � 	/(n sin2 U) OPD � 	/2
(d) Defocus � 3	/(2n sin2 U) OPD � 3	/4
(e) Defocus � 2	/(n sin2 U) OPD � 	

(f) Defocus � 4	/(n sin2 U) OPD � 2	

(Curves are based on diffraction effects—not on a geo-
metric calculation.)



the behavior of electromagnetic radiation. Note also that aberrations
always reduce the MTF.

The effects of small amounts of defocusing on the diffraction-
limited MTF are shown in Fig. 11.16. Note that curve B corresponds
to the depth of focus allowed by one Rayleigh limit as discussed in
Secs. 11.2 and 11.4. The small effect produced by an OPD of one-
quarter wavelength indicates the astuteness of Rayleigh’s selection
of this amount as one which would not “sensibly” affect the image
quality.

By way of comparison, Fig. 11.17 shows the MTF plots which would
be obtained by geometrical calculations of a perfect system defocused
by the same amounts. The agreement between Fig. 11.16, whose
curves are derived from wave-front analysis, and Fig. 11.17 is poor for
small amounts of OPD. However, when the defocusing is sufficient to
introduce an OPD of one wavelength or more, the agreement becomes
much better. Note that all the curves of Fig. 11.17 are of the same fam-
ily and that one can be derived from another by a simple ratioing of the
frequency scale. These curves are representations of

MTF(v) � ≈ (11.40)

where J1( ) indicates the first-order Bessel function,* B is the diame-
ter of the blur spot produced by defocusing, � is the longitudinal 
defocusing, NA is the numerical aperture, and v is the frequency in
cycles per unit length.

Note that in Figs. 11.16 and 11.17, some of the curves show a nega-
tive value for the MTF. This indicates that the phase shift in the image
(� in Eq. 11.33) is 180° and that the image is light where it should be
dark and vice versa. This is known as spurious resolution (since a line
pattern can be seen, but it is not a true image of the object) and is a
phenomenon which is frequently observed in defocused, well-corrected
lenses or in lenses whose defocused image of a point is a nearly uni-
formly illuminated circular blur. See Fig. 15.24 for example.

In Fig. 11.18, the effects of third-order spherical aberration on MTF
are shown. Note once again that the effect of an amount of aberration
corresponding to the Rayleigh limit (OPD � 	/4) is quite modest. The
situation here is quite similar to the defocusing case, in that MTF
curves based on geometrical calculations are in poor agreement with
Fig. 11.18 where the aberration is small, but in quite reasonable 

J1(2��NAv)
��

��NAv
2J1(�Bv)
��

�Bv
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agreement where the aberration is to the order of one or two wave-
lengths of OPD.

Figure 11.19 shows the effect of a central obstruction in the aperture
of a diffraction-limited system. Note that the introduction of a disk
into the aperture* drops the response at low frequencies but raises it
slightly at high frequencies (although it cannot change v0, the cutoff
frequency). Thus, a system of this type tends to show greatly reduced
contrast on coarse targets and a somewhat higher limit of resolution
(when used with a system which requires a modulation of more than
zero to detect resolution). This is the result of shifting light from the
airy disk to the rings of the diffraction pattern.

MTF with coherent and semi-coherent
illumination

All the preceding discussions (except that dealing with a central
obstruction of the aperture) have assumed a uniformly illuminated
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Figure 11.17 The effect of defocusing on the geometri-
cally calculated modulation transfer function of an
aberration-free system.
(a) In focus OPD � 0.0
(b) Defocus � 	/(2n sin2 U) OPD � 	/4
(c) Defocus � 	/(n sin2 U) OPD � 	/2
(d) Defocus � 2	/(n sin2 U) OPD � 	

(e) Defocus � 4	/(n sin2 U) OPD � 2	

These geometrically derived plots are in poor agree-
ment with the exact diffraction plots of Fig. 11.16 when
the defocusing is small. The agreement at OPD � 	
(curve D above, curve E in Fig. 11.16 is fair; the match
at OPD � 2	 is quite good).

*Apodization is the use of a variable transmission filter or coating at the aperture to
modify the diffraction pattern. Coatings which reduce the transmission at the center of
the aperture tend to “favor” the response at high frequencies; coatings which reduce
transmission at the edge of the aperture tend to favor the lower frequencies.
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Figure 11.18 The effect of third-order spherical aberra-
tion on the modulation transfer function.
(a) LAm � 0.0 OPD � 0
(b) LAm � 4	/(n sin2 U) OPD � 	/4
(c) LAm � 8	/(n sin2 U) OPD � 	/2
(d) LAm � 16	/(n sin2 U) OPD � 	

These curves are based on diffraction wave-front com-
putations for an image plane midway between the mar-
ginal and paraxial foci.

Figure 11.19 The effect of a central obscuration on the
modulation transfer function of an aberration-free sys-
tem.
(a) s0/sm � 0.0
(b) s0/sm � 0.25
(c) s0/sm � 0.5
(d) s0/sm � 0.75



and uniformly transmitting aperture. When the illumination system is
arranged so that only the central part of the aperture is illuminated
(and this can be done with Koehler illumination if a projection con-
denser images the source at a size smaller than the pupil of the pro-
jection lens), then the MTF plot is modified in a way which is nearly
the reverse of that shown in Fig. 11.19.

Fourier theory tells us that we can consider the brightness dis-
tribution of an object to be the sum of many sinusoidal brightness 
distributions of differing frequencies, intensities, and orientations. To
simplify matters, let us assume that we are projecting the image of a
simple sinusoidal grating. Remembering that a sinusoidal grating has
only the first diffraction order, consider the system shown in Fig.
11.20. If the illumination is coherent (i.e., collimated), the light from a
point in the grating will be diffracted into the first order, as illustrat-
ed in Fig. 11.20a. If the angle of diffraction is less than that of the
numerical aperture (NA) of the projection lens, the full power will be
projected into the image. But if the grating frequency is high enough
(so that v � NA/	), the diffracted ray will pass outside the lens aper-
ture, and no light corresponding to this frequency will make it into the
image. The result of this situation is an MTF plot as shown in Fig.
11.20c, with 100 percent MTF for spatial frequencies of NA/	 or less
and zero MTF for all higher frequencies. Note that NA/	 is just half
the cutoff frequency (v0 � 2NA/	), as given in Eq. 11.39 for the inco-
herent illumination case.
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Figure 11.20 (a–c) The MTF with coherent illumination. (d–f) The MTF with semicoher-
ent illumination (which partially fills the pupil).



If the illumination is semicoherent, the projection lens pupil will be
partially filled, as indicated in Fig. 11.20d, e. As we consider an increas-
ing grating frequency, the location of the illuminated area in the pupil
will move toward the edge. However, at the edge of the pupil, the cutoff
is gradual rather than abrupt, as in the coherent case described above,
and we get an MTF plot of the sort shown in Fig. 11.20f.

Figure 11.21 shows the effect on the MTF for several values of the
illumination system NA, expressed as a fraction of the lens NA. These
partial coherence effects are useful in both microlithography and
microscopy. Note that decentering or tilting the illuminating beam can
be used to get directional effects and that ring illumination can
emphasize a particular frequency.

As mentioned previously, MTFs have been applied to image-receiving
systems which are not imaging systems. Figure 11.22 shows the MTF
curves for a number of photographic emulsions. Since the MTF of a film
is computed on the basis of equivalent relative exposures derived from
density measurements on films exposed to sinusoidal test patterns, it is
possible to have a film MTF greater than unity. This results from the
chemical effects of development of the film on adjacent areas and will be
noticed at the low-frequency end of the curves in Fig. 11.22. An AIM
curve, as described in Section 11.8, can also be used to represent the
response characteristics of nonimaging devices and sensors such as films.

11.11 Radial Energy Distribution

The data of a point spread function or a spot diagram can be present-
ed in the form of a radial energy distribution plot. If the blur spot is
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Figure 11.21 MTF vs. frequency for a partially filled pupil (semicoherent illumination).
Numbers are the ratio of illuminating system NA to optical system NA.



symmetrical, it is apparent that a small circular aperture centered in
the image would pass a portion of the total energy and block the rest.
A larger aperture would pass a greater portion of the energy and so on.
A graph of the encircled fraction of the energy plotted against the
radius (semidiameter) of the aperture is called the radial energy dis-
tribution curve.

A radial energy distribution curve, such as the example shown in
Fig. 11.23, can be used to compute the MTF for an optical system by
means of the summation equation

MTF(v) �  
i � m

i � 1

EiJ0[2�vR�i]

where v is the frequency in cycles per unit length, 
Ei is the difference
(Ei � Ei�1) between two values of E, the fractional energy, R�i is the
average 12(Ri � Ri�1) of the corresponding values of the radius and 
J0( ) indicates the zero-order Bessel function.*

Although this radial energy distribution relationship is (strictly
speaking) valid only for point images which have rotational symmetry,
i.e., for images on the optical axis, it can be used to predict approxi-
mate averaged resolution for off-axis points. This procedure, while it
cannot yield separate radial and tangential values for resolution, does
serve to give the designer a rough idea of the state of correction of the
system.
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Figure 11.22 Modulation transfer functions of several
photographic emulsions.
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11.12 Point Spread Functions for the
Primary Aberrations

The figures of this section illustrate the effects of the primary aberra-
tions on the point spread function (PSF) of an optical system. Figures
11.24 through 11.28 each show four point spread functions, the first for
a peak-to-valley OPD (wave-front deformation) of an eighth-wave, the
second for a quarter-wave (which is the Rayleigh criterion), the third
for a half-wave, and the fourth for a full wavelength of OPD. The cap-
tion for each figure also gives the rms (root mean square) OPD and the
Strehl ratio for each PSF (see Sec. 11.4 and Fig. 11.5).

Figure 11.24 shows the effect of simple defocusing on the PSF. Note
that for defocusing, the Rayleigh criterion (which is the OPD equal to
a quarter-wave) is identical to the Marechal criterion (Strehl ratio
equal to 0.80). In Fig. 11.25, which shows the effect of simple third-
order spherical aberration, the PSF for an eighth-wave is almost iden-
tical to that for defocusing, and the quarter-wave PSF is very similar.
But when we compare the half- and full-wave plots, the differences are
quite apparent, despite the fact that the effects on the MTF and reso-
lution are still comparable.

The coma PSF in Fig. 11.26, however, is noticeably different even at
an OPD of an eighth-wave, where the unsymmetrical rings in the dif-
fraction pattern are already apparent. At one wave of OPD the PSF is
clearly showing the “comma-” or “comet-shaped” figure that one gets
from a geometric optics spot diagram (see Fig. 11.6 for example).

Figure 11.27 may be a bit surprising to some readers. Most discus-
sions of astigmatism (including that in Sec. 3.2 of this text) which are
based on geometric optics indicate that the blur spot between the
sagittal and tangential focal lines is an ellipse or a circle, depending
on where the image is examined. However, in the PSF for either half-
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Figure 11.23 Radial energy dis-
tribution plot. The curve indi-
cates the fraction E of the total
energy in an image pattern
which falls within a circle of
radius R. Thus all the energy is
encompassed by a circle of
radius Rm; Ei of the energy by a
circle of radius Ri.



or full-wave OPD we can easily see that the blur spot is not circular
but has a definite four-sided aspect. Anyone who has microscopically
examined the image of a point source formed by a lens with astig-
matism as its major aberration will have observed this (and probably
has wondered where the square-shaped image blur came from). It
may help to understand this phenomenon to realize that the two
focal lines are effectively acting as apertures, and the diffrac-
tion effect of this is to introduce the cross-shaped illumination 
distribution.

The most customary balance between third-order and fifth-order
spherical aberration is with the aberration of the marginal ray cor-
rected to zero. This state of correction produces the least peak-to-val-
ley OPD (as demonstrated in Sec. 11.3). In Fig. 11.28, the eighth-wave
PSF is not very different from that for pure third-order spherical, or
even defocus, but at a quarter-wave one begins to notice that the rings
are more pronounced than they are in Figs. 11.24 and 11.25. This effect
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Figure 11.24 Point spread functions for different amounts of defocus. (a) 0.125 wave (P-
V); 0.037 wave rms; 0.95 Strehl. (b) 0.25 wave (P-V); 0.074 wave rms; 0.80 Strehl. (c) 0.50
wave (P-V); 0.148 wave rms; 0.39 Strehl. (d) 1.00 wave (P-V); 0.297 wave rms; 0.00
Strehl.



is quite noticeable in a star test, where heavy rings in the diffraction
pattern are an indication of a zonal spherical residual.

The final figure in this series, Fig. 11.29, compares the PSF for the
various aberrations, each of which is set at a value which equals the
Marechal criterion (a Strehl ratio of 80 percent). There are differences
apparent if one looks very closely at the defocus and spherical plots,
and there are obvious differences for astigmatism and coma. However,
the net effect on the image quality is surprisingly similar. This is, of
course, the reason that the Rayleigh criterion of a quarter-wave (peak-
to-valley) OPD and the Marechal criterion of 0.80 Strehl are so widely
accepted by lens designers as a standard of image quality.

Note: These figures were prepared by applying an optical software
program to systems which were set up to show only the particular
aberration under consideration. A paraboloidal reflector was the 
obvious choice for the defocusing PSF because its axial image is total-
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Figure 11.25 Point spread functions for different amounts of third-order spherical aber-
ration. (a) 0.125 wave (P-V); 0.040 wave rms; 0.94 Strehl. (b) 0.25 wave (P-V); 0.080
wave rms; 0.78 Strehl. (c) 0.50 wave (P-V); 0.159 wave rms; 0.37 Strehl. (d) 1.00 wave
(P-V); 0.318 wave rms; 0.08 Strehl. Note: Reference sphere centered at 0.5LAm (midway
between marginal and paraxial foci).



ly aberration-free. The spherical aberration plots were created by
deforming the paraboloid with a fourth-order deformation term for the
third-order spherical plot and fourth- and sixth-order deformations for
the third- and fifth-order spherical plot. The coma PSF was calculated
using a paraboloidal reflector with its aperture stop at the focal plane
(which eliminates astigmatism), as in Fig. 13.37a. The image was put
on a curved surface which approximated a sphere of radius equal to
the focal length of the reflector and which was centered at the center
of curvature of the paraboloid. The astigmatism PSF was produced by
introducing an additional cylindrical parabolic reflector.
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Figure 11.27 Point spread functions for different amounts of astigmatism. (a) 0.125 wave
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0.50 wave (P-V); 0.104 wave rms; 0.65 Strehl. (d) 1.00 wave (P-V); 0.207 wave rms; 0.18
Strehl. Note: Reference sphere centered midway between sagittal and tangential foci.
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Figure 11.28 Point spread functions for different amounts of zonal spherical aberration
(third- and fifth-order spherical balanced so that marginal spherical equals zero). (a)
0.125 wave (P-V); 0.042 wave rms; 0.93 Strehl. (b) 0.25 wave (P-V); 0.085 wave rms;
0.75 Strehl. (c) 0.50 wave (P-V); 0.208 wave rms; 0.35 Strehl. (d) 1.00 wave (P-V); 0.403
wave rms; 0.09 Strehl. Note: Reference sphere centered at 0.75LAz for P-V and at
0.8LAz for rms.



Wetherell, W., in Shannon and Wyant (eds.), Applied Optics and
Optical Engineering, vol. 8, New York, Academic, 1980 (calculation
of image quality).

Exercises

1 The longitudinal spherical aberration of a spherical reflector is equal to
y2/8f (to a third-order approximation). What is the maximum diameter a 36-in
focal-length spherical reflector may have without exceeding an OPD of one-
quarter wavelength for visual light, 	 � 20 � 10-6 in ? (use Eg. 11.16)

answer: 4.7 in

2 The third-order sagittal coma of a parabolic reflector is given by �y2�/4f,
where � is the half-field angle in radians. What is the maximum diameter a
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Figure 11.29 Point spread functions for five different aberrations, each with a Strehl
ratio of 0.80 (the Marechal criterion). In each case the center of the reference sphere is
located to minimize the rms OPD, which is 0.075 wave for all five aberrations. (a)
Defocus: 0.25 wave (P-V). (b) Third-order spherical: 0.235 wave (P-V). (c) Balanced third-
and fifth-order spherical: 0.221 wave (P-V). (d) Astigmatism: 0.359 wave (P-V). (e) Coma:
0.305 wave (P-V).



36-in focal-length sperical reflector cover without exceeding the Rayleigh lim-
it? (	 � 2 � 10�5 in)

answer: ±0.0041 radians (0.47° total field)

3 An f/5 system is defocused by 0.05 mm. What is the modulation transfer
factor for a “sine wave” target with a spatial frequency (at the image) of 120
cycles per millimeter? Use Fig. 11.16, Eq. 11.2, and assume 	 � 0.5 �m.

ANSWER: 0.23
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The Design 
of Optical Systems: 

General

12.1 Introduction

In the immediately preceding chapters, we have been concerned with
the analysis of optical systems, in the sense that the constructional
parameters of the system were given and our object was the determi-
nation of the resultant performance characteristics. In this chapter we
take up the synthesis of optical systems; here the desired performance
is given and the constructional parameters are to be determined. A
large part of the synthesis process is, of course, concerned with analy-
sis, since optical design is in great measure a systematic application of
the cut-and-try process.

There is no “direct” method of optical design for original systems;
that is, there is no sure procedure that will lead (without foreknowl-
edge) from a set of performance specifications to a suitable design.
However, when it is known that a certain type of design or configura-
tion is capable of meeting a given performance level, it is a fairly
straightforward process for a competent designer to produce a design
of the required type. Further, modest improvements to existing
designs can almost always be effected by well-established techniques.
Thus, it is apparent that a good portion of the ammunition in a lens
designer’s arsenal consists of an intimate and detailed knowledge of a
wide range of designs, their characteristics, limitations, idiosyn-
crasies, and potentials. Here is one part of the art in optical design;
basically it consists of the choice of the point at which the designer
begins.

Chapter
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The electronic computer, in the course of little more than a decade,
radically modified the techniques used by optical designers. Previously
a designer resorted to all manner of ingenious techniques to avoid
tracing rays because of the great expenditure of time and effort
involved. The computer has reduced raytracing time by many orders of
magnitude, and it is now easier to trace rays through a system than it
is to speculate, infer, or interpolate from incomplete data. A computer
can even be made to carry through the entire design process from start
to finish, more or less without human intervention. The results pro-
duced by such a process are nonetheless intricately dependent on the
starting point elected (as well as the manner in which the computer
has been programmed), so that a great deal of art (if perhaps some-
what less personal satisfaction) is still present in even the most auto-
matic technique.

The ordinary design process can be broken down into four stages, as
follows: first, the selection of the type of design to be executed, i.e., the
number and types of elements and their general configuration. Second,
the determination of the powers, materials, thicknesses, and spacings
of the elements. These are usually selected to control the chromatic
aberrations and the Petzval curvature of the system, as well as the
focal length (or magnifying power), working distances, field of view,
and aperture. (Choices made at this stage may affect the performance
of the final system tremendously, and can mean the difference between
success and failure in many cases). In the third stage, the shapes of the
elements or components are adjusted to correct the basic aberrations
to the desired values. The fourth stage is the reduction of the residual
aberrations to an acceptable level. If the choices exercised in the first
three stages have been fortuitous, the fourth stage may be totally
unnecessary. At the other extreme, the end result of the first three
stages may be so hopeless that a fresh start from stage 1 is the only
alternative.

In fully automatic computer design procedures, a portion of stage 1
and all of stages 2, 3, and 4 may be accomplished more or less simul-
taneously (using an approach that might take a human computer a
lifetime or two to slog through). Computer design techniques are dis-
cussed in Sec. 12.8.

The basic principles of optical design will be illustrated by three
detailed examples in the following sections. A simple meniscus (box)
camera lens will be used to show the effects of bending and stop shift
techniques, as well as the handling of a simplified exercise in satisfy-
ing more requirements than there are available degrees of freedom. An
achromatic telescope objective will introduce material choice, achro-
matism, and multiple bending techniques. An air-spaced (Cooke)
triplet anastigmat will illustrate the problem of controlling all the
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first- and third-order aberrations in a system with just a sufficient
number of degrees of freedom to accomplish this and will further illus-
trate the technique of material selection. The design characteristics of
several additional types of optical systems are discussed in Chaps. 13
and 14.

At this point it should be emphasized that the design procedures
implied by the discussions in Secs. 12.2, 12.4 to 12.6, and to some
extent 12.7, while perfectly valid, are presented here as a way of
explaining the principles, relationships, limitations, etc., involved in
the design. These procedures are rarely used today; the computer,
especially the desktop personal computer, or PC, has enough comput-
ing power so that every designer can have access to some sort of auto-
matic lens design program. Nonetheless, a knowledge of these
procedures and principles is of great utility to a designer, even when
using an automatic design program. For example, such knowledge
helps in selecting a good starting design for the computer and, among
other things, often helps in figuring out what went wrong when the
designer has asked the computer to do the optically impossible.

12.2 The Simple Meniscus Camera Lens

There are just two elements to work with in the design of a meniscus
camera lens, the lens itself and the aperture stop. If, for the moment,
we restrict ourselves to a thin, spherical-surfaced element, the param-
eters which we may choose or adjust are the material of the lens, its
focal length, its shape (or bending), the position of the stop, and the
diameter of the stop. With these degrees of freedom we must design a
lens which will produce an acceptable image on a given size of film.
This implies that all the aberrations of the system must be “suffi-
ciently” small. It is immediately apparent that the spherical aberra-
tion will be undercorrected and that the Petzval curvature will be
inward-curving (and equal to �h2�/2n); these are the immutable char-
acteristics of a simple lens. Thus, the element power, the size of the
aperture, and the field of view must be chosen small enough so that the
effects of these aberrations are tolerable. The lens material usually 
chosen is common crown glass or acrylic plastic, on the basis of cost,
since a box camera lens must be inexpensive. A high-index crown does
not produce enough improvement in the Petzval curvature to warrant
its increased cost; a flint glass would introduce increased chromatic
aberrations.

We find ourselves with just two uncommitted degrees of freedom,
namely the bending of the lens and the position of the stop. Now in a
simple undercorrected system it is axiomatic that for a given (i.e., fixed)
shape of the lens (or lenses), the position of the stop (the “natural” stop
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position—see Sec. 3.4) for which the coma is zero is also the position for
which the astigmatism is the most overcorrected (i.e., most backward-
curving). Since the Petzval surface will be inward (toward the lens)
curving, some overcorrected astigmatism is desirable.

Thus the design technique is straightforward: we choose (arbitrarily)
a shape for the lens, determine the stop position at which coma is zero,
and evaluate the aberrations. By repeating this process for several
bendings and graphing the aberrations as a function of the shape, we
can then choose the best design.

There are several ways in which this can be accomplished. Since this
is a simple lens of moderate aperture and field, the third-order aber-
rations are quite representative of the system and one would be quite
safe in relying on them. The design could also be handled by trigono-
metric raytracing. For this example we will work out the design using
the thin-lens (G-sum) third-order aberration equations and then check
the results by raytracing.

Assuming that the glass has an index of 1.50 and a V-value of 62.5,
we will set up the G-sum equations for a focal length of 10, an aperture
diameter of 1.0, and an image height of 3 (all in arbitrary units and all
subject to scaling and adjustment later). Thus, the element power � �
1⁄10 � 0.1, and the total curvature c � c1 � c2 � �/(n � 1) � 0.2. With the
object at infinity, #1 � 0. Using the G-values worked out in Example G
of Chap. 10, we find that the spherical and coma (stop at the lens) giv-
en by Eqs. 10.8m and 10.8n are

TSC � �0.145833C1
2 � 0.05C1�0.005625

CC � �0.0625C1 � 0.01125

Now the position of the stop can be determined by solving Eq. 10.8g
for Q when CC* is zero.

CC* � 0 � CC � Q � TSC

Q �

Equations 10.8o, p, and r give us

TAC � �0.0225

TPC � �0.015

TAchC � �0.008

and by substituting the above into Eqs. 10.8h, j, and l, we get the fol-
lowing expressions for the third-order astigmatism, distortion, and lat-
eral color with the stop as defined by Q above.

�CC
�
TSC
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TAC* � �0.0225 � 2Q � CC � Q2 � TSC

DC* � �0.0825Q � 3Q2CC � Q 3TSC

TchC* � �0.008Q

Having established the above relationships, we now select several
values for C1 and evaluate the third-order aberrations for each. The
results are indicated in the tabulation of Fig. 12.1 and the graph of
Fig. 12.2. Note that Xs � PC* � AC* and Xt � PC* � 3AC*. [Here we
revert to the older symbol (X) for field curvature rather than the cur-
rently popular Z.]

A study of Fig. 12.2 can be quite rewarding. First, we note that
there are two regions which appear most promising, namely the
meniscus shapes at either side of the graph. On the left, the lens is
concave to the incident light and (since Q is positive) the stop is in
front of the lens. To the right the lens is convex to the incident light
and the stop is behind the lens. Both forms have more undercorrect-
ed spherical aberration than the less strongly bent shapes, but both
have their field curvature “artificially” flattened by overcorrected
astigmatism. Note that the form with the least spherical aberration
(where CC � 0 and the stop is in contact with the lens) has the most
strongly inward curving field. This inward-curving field is character-
istic of any thin optical system with the stop in contact, since by Eqs.
10.8p and 10.8h

Stop in contact XT � PC* � 3AC* �
�h2� (3n � 1)
��

2n
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Figure 12.1 Tabulation of the third-order aberrations of a thin lens with the stop at the
coma-free position, for various values of C1.



Selecting the bending C1 � �0.2 for further investigation, we note
that Q � �1.11 (from Fig. 12.1). Since Q � yp/y and y � 0.5, we find 
yp � 0.555. The slope of the principal ray in object space which will
yield an image height h � �3 with a focal length of �10 is up � �0.3.
The stop position is thus

lp � � � �1.85

or 1.85 units to the left of the lens.
We must of course convert our thin lens to a real lens. A ray with a

slope of �0.3 through the upper edge of the stop (diameter � 1.0) will
strike the lens at a height of 1.05, and we shall assume a diameter 
of twice this for the lens. We determine the curvature of the second 

�0.555
�

�0.3
�yp
�
up
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Figure 12.2 The third-order ab-
errations of a thin lens (f � 10,
y � 0.5, h � 3, n � 1.5) with the
stop at the coma-free position,
plotted as a function of the cur-
vature of the first surface (C1).



surface from C2 � C1 � C � �0.2 � 0.2 � �0.4, and compute the sagit-
tal heights of the surfaces for the diameter of 2.10. Thus for our lens
to have an edge thickness of 0.1, it must have a center thickness of 
CT � ET � SH1 � SH2 � 0.1 � 0.11 � 0.23 � 0.22. We now trace an
oblique fan of four equally spaced meridional rays through the system
and calculate two values of coma (by Eq. 10.6d), one from the upper three
rays and one from the lower three. By linear interpolation between the
two overlapping three ray bundles, we find that a bundle with a chief ray
axial intercept of Lpr � � 1.664 will have zero coma. This is the stop posi-
tion for the thick lens (vs. lpr � �1.85 for the thin lens.)

The results of a raytrace analysis are shown in Fig. 12.3. The field
curvature and spherical aberration forecast by the thin-lens third-
order computations are shown as circled points, and the agreement
with the actual raytrace is quite good. Note that complete TOA plots
could be derived from our knowledge of the manner in which the TOA
vary with aperture and image height (see the tabulation of Fig. 3.16).
For example, knowing that (longitudinal) third-order spherical varies
as Y2 and that SC � �0.429 for Y � 0.5, we could determine that SC
� �0.107 for Y � 0.25 and plot it accordingly. In Fig. 12.3 the dashed
lines in the ray intercept plots indicate the portions of the ray fan
which are intercepted by the stop.
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Figure 12.3 The aberrations of a rear meniscus camera lens. The
circled points indicate the aberrations predicted by the thin-lens
third-order aberration equations (G-sums).



To complete the design we would next scale the entire system to the
actual focal length desired. (Note that all the linear dimensions of any
system, including the aberrations, may be multiplied by the same con-
stant to effect a change in scale. No additional computation is neces-
sary.) Next an appropriate size for the aperture would be selected, i.e.,
one which would reduce the aberration blurs to sizes commensurate
with the intended application.

The lens form that we have elected to design in this example has
the aperture stop in front, i.e., to the left of the lens. This is often
referred to as the rear-meniscus form. From Fig. 12.2 it is apparent
that there is a similar front-meniscus form with the stop behind (to
the right of) the lens. Question: Which is the better design? On the
basis of aberration correction, the rear meniscus is slightly better.
However, there are several points on which the front meniscus is
superior. In a camera, the length of the camera will be approximately
equal to the lens focal length for the front meniscus, whereas for the
rear meniscus we must add the distance to the stop, resulting in a sig-
nificantly longer camera. Further, in an inexpensive camera, the
shutter is usually a simple spring-driven blade located at the aper-
ture stop. Thus, for the rear meniscus, the shutter mechanism is
exposed to the environment; in the front meniscus, the lens acts as a
protective window. Finally, and perhaps most important, in the front
meniscus, the lens is out in front and quite visible to the customer,
whereas in the rear meniscus, all the customer ever sees is the less
appealing shutter mechanism. These latter “commercial” reasons are
why the front-meniscus form has been universally used for inexpen-
sive cameras since the 1940s. Apparently there is more to optical
engineering than aberration correction.

At the start of this section we assumed that the lens would be thin
and its surfaces spherical. If we increase the thickness of a meniscus
lens and maintain its focal length at a constant value by adjusting one
of the radii, it is apparent from the thick-lens focal-length equation
(Eq. 2.28) that we must either reduce the power of the convex surface
or increase the power of the concave surface to maintain the focal
length as the thickness is increased. Either change will have the effect
of reducing the inward Petzval curvature of field. This principle (i.e.,
separation of positive and negative surfaces, elements, or components
in order to reduce the Petzval sum) is a powerful one and is the basis
of all anastigmat designs.

The value of aspheric surfaces is limited in a design as simple as the
box camera lens. However, if the lens is molded from plastic, an aspher-
ic surface is as easy to produce as a spherical one; many simple cam-
eras now have aspheric plastic objectives. The aspheric surface affords
the designer additional freedom to modify the system to advantage. A
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diffractive surface could be used to achromatize the lens (and affect
the other aberrations as well).

12.3 The Symmetrical Principle

In an optical system which is completely symmetrical, coma, distortion,
and lateral color are identically zero. To have complete symmetry a sys-
tem must operate at unit magnification and the elements behind the stop
must be mirror images of those ahead of the stop. This is a principle of
great utility, not only for systems working at unit power, but even for sys-
tems working at infinite conjugates. This is due to the fact that, although
coma, distortion, and lateral color are not completely eliminated under
these conditions, they tend to be drastically reduced when the elements
of any system are made symmetrical, or even approximately so. For this
reason many lenses which cover an appreciable field with low distortion
and low coma tend to be generally symmetrical in construction.

If we were to apply this principle to the meniscus camera lens, we
would simply use two identical menisci equidistant on either side of
the stop. The resulting lens would be practically free of coma, distor-
tion, and lateral color. The periscopic lens, shown in Fig. 12.4, makes
use of this principle. Symmetry, plus the thick meniscus principle (to
flatten the field) achieves a very remarkable astigmatic field coverage
of ±67° for the Hypergon lens, which is also shown in Fig. 12.4. This is
accomplished at the expense of a heavily undercorrected spherical
aberration which limits its useful speed to about f /30 or f /20.
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Figure 12.4 Symmetrical (simple)
meniscus lenses. The upper sketch
shows a periscopic-type lens composed
of two identical meniscus lenses. The
lower sketch shows the Hypergon (U.S.
Patent 706,650-1902), whose nearly
concentric construction allows it to cov-
er a total field of 135° at f/30. The inner
and outer radii of the Hypergon differ
by only one-half percent, producing a
very flat Petzval curvature. Aberrations
shown are for a focal length of 100.



12.4 Achromatic Telescope Objectives
(Thin-Lens Theory)

An achromatic doublet is composed of two elements, a positive crown
glass element and a negative flint glass element. (Stated more gen-
erally, an achromatic doublet consists of a low-relative-dispersion
element of the same sign power as the doublet and a high-relative-
dispersion element of opposite sign.) As degrees of freedom we have
the choice of glass types for the elements, the powers of the two ele-
ments, and the shapes of the two elements.

We assume here that we are designing a telescope objective, that
the stop or pupil will be located at the lens, and that the lens will be
thin. The astigmatism of a thin lens in contact with the stop is fixed,
regardless of the number of elements, their index, or their shapes.
Equation 10.8o indicates TAC � (h 2�u ′k)/2 for a single element. Since
the power of a doublet is simply the sum of the powers of the ele-
ments, this equation applies to a doublet as well as a singlet. Thus we
cannot affect the astigmatism (and can do very little about the
Petzval curvature). The field will be strongly inward-curving.

With reference to Fig. 12.5, it is apparent that we have only four
variable parameters with which to correct the aberrations. Actually,
one parameter must always be assigned to control the focal length in
any lens design. Thus we have three variables left; we will use them
to correct spherical aberration, coma, and axial chromatic aberration.

Since the lens is to be free of chromatic aberration, we must assign
the element powers to the determination of focal length and the con-
trol of chromatic aberration. Again we begin by using the thin-lens
third-order aberration equations; assigning the subscripts a and b to
the two elements, Eq. 10.8r gives us

∑TAchC � TAchCa � TAchCb � �

Since the elements are to be cemented together or very nearly in
contact, we can substitute ya � yb � y and u′k � �y /f to get

Yb
2�b

�
Vbu ′k

Ya
2�a

�
Vau ′k
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Figure 12.5 Achromatic doublet.



∑TAchC � �fy � � � (12.1)

We now set ∑TAchC � 0 (or some other value, if desired) and make
a simultaneous solution of Eq. 12.1 with

� �a � �b (12.2)

to get the necessary powers for the elements. For zero chromatic, we
get

�a � (12.3)

�b � � (12.4)

Having determined �a and �b, we can now write thin-lens equations
for the third-order spherical and coma in terms of the shapes of the
elements [after tracing a marginal (thin-lens) paraxial ray to deter-
mine the values for u′k of the combination and # (or # ′) for each ele-
ment]. Since the aperture stop will be at the lens, Q � 0.0 and the
coma will be given by Eq. 10.8n. After the appropriate substitutions for
h, y, 
Ca � �a /(na � 1), Cb � �b /(nb � 1), and the G-factors, we arrive at an
equation of the following general form for coma:

∑CC � CCa � CCb � K1C1 � K2 � K3C3 � K4 (12.5)
� K1C1 � K3C3 � (K2 � K4)

where C1 and C3 are the curvatures of the first surfaces of the elements
(Fig. 12.5), and K1 through K4 are constants. (Note that by using the
alternate form of Eq. 10.8n for element a, the equation could be writ-
ten in C2 and C3, the curvatures of the adjacent inner surfaces). Now
for any desired value of ∑CC, we find that

C3 �

or, combining constants

C3 � K5C1 � K6 (12.6)

Thus for any shape of element a, Eq. 12.6 indicates the unique shape
for element b which will give the desired amount of coma.

∑CC � K1C1 � K2 � K4
���

K3

��aVb
�

Va

Vb
��
f(Vb � Va)

Va
��
f(Va � Vb)

1
�
f

�b
�
Vb

�a
�
Va
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In similar fashion we can write an expression for the thin-lens third-
order spherical (using Eq. 10.8m) in the following form:

∑TSC � TSCa � TSCb � K7C1
2 � K8C1 � K9 � K10C3

2

� K11C3 � K12 (12.7)

By substituting the value for C3 from Eq. 12.6 into 12.7, and com-
bining constants, we get a simple quadratic equation in C1 of the form

0 � C1
2 � K13C1 � K14 (12.8)

which can be solved for the value of C1. When used with the value of
C3 given by Eq. 12.6, this will yield a doublet with spherical and coma
of the desired amounts. (Note that because Eq. 12.8 is a quadratic,
there may be one, two, or no solutions.)

For a first try, one would use the above procedure with ∑TAchC,
∑TSC, and ∑CC equal to zero (or whatever values are desired). Next,
appropriate thicknesses are inserted, and the system tested by ray-
tracing to determine the actual values of spherical, coma (or OSC), and
axial color. If these are not within tolerable limits, the thin-lens solu-
tion can be repeated using (for the desired ∑TAchC, ∑TSC, and ∑CC)
the negatives of the corresponding values determined by raytracing.
This process converges to a solution very rapidly.

While the above procedure is useful in understanding the nature of
the doublet telescope objective, a designer with an optical software
computer program could handle this project very easily. The four sur-
face curvatures would be declared as variables, and the merit function
would consist of targets for the actual ray-traced values of marginal
spherical aberration, coma, and chromatic aberration plus the 
effective focal length. Given a reasonable starting lens form, the task 
is trivial, and the nearest solution to the starting form is found 
immediately.

12.5 Achromatic Telescope Objectives
(Design Forms)

Depending on the choice of glass, the relative aperture, the desired
values of the aberrations, and also on which solution to the quadratic
was selected, the procedure outlined in Sec. 12.4 will result in an objec-
tive with one of the forms sketched in Fig. 12.6. In general the edge
contact form and, for lenses of modest (up to 3- or 4-in) diameter, the
cemented form is preferred, primarily because the relationship
between the elements (as regards mutual concentricity about the axis
and freedom from tilt) can be more accurately maintained in fabrica-
tion. The crown-in-front forms are more commonly used because the
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front element is more frequently exposed to the rigors of weather;
crown glasses are in general more resistant to weathering than flint
glasses.

The Fraunhofer and Steinheil forms represent one root of the qua-
dratic of Eq. 12.8, and the Gauss form is the other root. Whether one
gets the Fraunhofer or the Steinheil form simply depends on whether
the left-hand element is of crown or flint glass. From an image-quali-
ty standpoint, there is little difference between them. However the
Gauss objective is very different. The Gauss lens has about an order-
of-magnitude more zonal spherical aberration residual and slightly
(about 20 percent) more secondary spectrum than the Fraunhofer.
However, it has only about half the spherochromatism. Another differ-
ence is that there is no solution for the Gauss form if the lens elements
are too thick; thus the speed is limited to about f/5 or f/7 to avoid thick
elements. The Fraunhofer and Steinheil forms can be corrected at
speeds faster than f/3 (although the residual aberrations are of course
quite large at high speeds).

If one followed the procedure of Section 12.4, a design resulting in a
cemented doublet (i.e., C2 � C3) would be a lucky accident. When a
cemented interface is necessary, an alternate procedure is followed.
The spherical and coma contribution equations are written in C2 and
C3 (instead of C1 and C3) and C2 is set equal to C3, resulting in 
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Figure 12.6 Various forms of achromatic doublets. The
upper row are crown-in-front doublets and the lower row
are flint-in-front. The curvatures are exaggerated for clar-
ity. The center contact form is usually avoided because it is
more difficult to manufacture. The shapes indicated are for
lenses corrected for a distant object to the left.



equations in C2 (or C3) which may then be solved for either the desired
coma or spherical. If these equations are plotted as a function of the
shape of the doublet (i.e., versus C1 or C2 or C4) the resulting graph will
look like one of those in Fig. 12.7, in which ∑TSC is a parabola and
∑CC is a straight line. In the left plot there is no solution for spheri-
cal, in the center plot the solutions for spherical and coma occur at the
same bending, and on the right there are two possible solutions for
spherical with equal and opposite-signed amounts of coma, and often
with pronounced meniscus shapes. (These latter solutions are valuable
if one desires to utilize the doublets in a symmetrical combination
about a central stop, e.g., as an erector or a rapid rectilinear photo
lens; the coma can then be used to reduce or overcorrect the astigma-
tism per Eq. 10.8h.) The exact form obtained is dependent primarily on
the types of glass chosen. In general, the spherical aberration parabo-
la can be raised by selecting a new flint glass with a lower index and
higher V-value, or by selecting a new crown with a higher index and
lower V. Thus the strongly meniscus solutions of the right-hand plot in
Fig. 12.7 result from a glass pair with a small difference in V-value.
Results approximating those in the middle graph of Fig. 12.7 can be
obtained with BK7 (517:642) and SF2 (648:339). The best glass choice
depends on the aperture (f/#) of the lens.

Figure 12.8 shows the spherical aberration and the spherochroma-
tism of a typical cemented doublet. As previously noted, the field cur-
vature of a thin system with stop in contact is strongly inward and
cannot be modified unless the stop is shifted. Thus, systems of this
type are limited to applications which require good imagery over rela-
tively small fields (a few degrees from the axis).

It is occasionally desirable to produce a doublet objective with both
the zonal and marginal spherical simultaneously corrected. This can
be accomplished by using the airspace of a broken contact doublet as
an added degree of freedom. The design is begun exactly as in Sec.
12.4, except that two (or more) thick-lens solutions are derived, one
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Figure 12.7 The variation of spherical aberration (solid line) and coma
(dashed) as a function of the shape of a cemented achromatic doublet.
Depending on the materials used there may be two forms with zero
spherical (right), one form (center), or no form (left). The center graph
is the preferred type since spherical and coma are both corrected.



with a minimum airspace and the other(s) with an increased space.
The calculated zonal spherical is then plotted against the size of the
airspace, and the airspace with LAz equal to zero is selected; this form
will usually have no zonal OSC. Speeds of f/6 or f/7 can be attained
with practically no spherical or axial coma over the entire aperture.
Good glass choices are a light barium crown combined with either a
dense flint or an extradense flint; either crown-in-front or flint-in-front
forms are possible. In this type of lens the residual axial aberration
consists almost solely of secondary spectrum.

Spherochromatism, which is the variation of spherical aberration as
a function of wavelength, can be corrected by a change in the spacing
between elements (or components) which differ in the sign of their con-
tributions to spherical and chromatic aberration. This general princi-
ple may be applied to the doublet achromat in a manner paralleling
the use of the airspace to correct zonal spherical; indeed, the basic
principle is the same for both aberrations.

The source of spherochromatism can be understood by realizing that
(in a cemented doublet) the two outer surfaces contribute under cor-
rected spherical aberration, while the cemented interface contributes
overcorrected spherical. The amount of the contribution varies directly
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Figure 12.8 The spherical aberration and spherochromatism of a cemented
achromatic doublet, efl � 100, f/3.0. Note that the chromatic is corrected at
the margin. This is good practice if the spherochromatism is large; otherwise
the image shows a blue flare. For small amounts, correction at the 0.7 zone
is often a better choice.



with the size of the index change, or “break,” across the surface. The con-
tributions are in balance for the nominal wavelength. At a shorter wave-
length all the indices are higher; because of its greater dispersion, the
index of the negative (flint) element increases about twice as rapidly as
that of the positive (crown) element. The index break at all three sur-
faces is larger at the shorter wavelength. However, the index break at
the outer surfaces is (n � 1), whereas at the cemented surface it is (n′ �
n); as the wavelength and the indices change, (n′ � n) changes propor-
tionately more than does (n �1). Thus as we go to a shorter wavelength,
the overcorrecting contribution of the cemented surface is increased
more than the undercorrection from the outer surfaces. The result is
that the short-wavelength light is overcorrected compared to the central
or longer wavelength. This is spherochromatism.

Now, if the airspace between elements is increased, as indicated in
Fig. 12.9, the blue marginal ray, having been refracted more strongly
than the red ray by the crown element, will strike the flint element at
a lower height than will the red ray. Thus the refraction of the blue ray
at the flint will be lessened relative to the red, and its overcorrection
reduced accordingly.

A very similar argument can be applied to the reduction of an under-
corrected zonal spherical (which is caused by an overcorrected fifth-
order spherical) by use of an increased airspace. The increased airspace
affects the zonal spherical because the undercorrected spherical of the
positive element bends the marginal ray toward the axis disproportion-
ately more than the zonal ray. Thus, when the airspace is increased, the
ray height at the overcorrecting negative element is reduced propor-
tionately more for the marginal ray than for the zonal ray. The result is
that the overcorrection is reduced more at the margin than at the zone,
and, when the element shapes are readjusted to correct the marginal
aberration, the zonal spherical is reduced. An airspaced doublet with
reduced spherochromatism and reduced zonal spherical is shown in Fig.
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Figure 12.9 The ordinary spherochromatism of a doublet can be corrected
by increasing the airspace [shown highly exaggerated in (b)]. This reduces
the height at which the blue ray strikes the flint by a greater amount than
for the red ray, thus reducing the overcorrection of the marginal blue ray.
Sketches (c) and (d) show triplet forms which can be used to correct sphe-
rochromatism and spherical zonal residuals simultaneously.



12.10. Both principles are applicable to more complex lenses as well.
Figure 12.10 shows an example of these principles.

One method of effecting a simultaneous elimination of both sphe-
rochromatism and zonal spherical is indicated in Fig. 12.9c. The dou-
blet plus singlet configuration (in any of several arrangements of the
elements) introduces still another degree of freedom, namely the bal-
ance of positive (crown) power between the two components, which can
be used with the airspace to bring about the correction. The airspaced
triplet shown in 12.9d is also capable of very good correction, but is
more difficult to manufacture. Figure 13.53 illustrates the reduction of
spherical by element splitting. Figure 14.3 shows an airspaced triplet
telescope objective.

The secondary spectrum (SS) contribution of a thin lens is given by
Eq. 10.8t; combining this with the requirements for achromatism (Eqs.
12.3 and 12.4), we find that the secondary spectrum of a thin achro-
matic doublet is given by

SS � � (12.9)
�f 
P
�


V
f (Pb�Pa)��
(Va�Vb)
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Figure 12.10 The spherical aberration and spherochromatism of an airspaced
achromatic doublet, efl � 100, f/3.0. The size of the airspace used here is a com-
promise between the value which would minimize the zonal spherical aberration
and that which would minimize the spherochromatism. Compare the residual
aberrations with those of the cemented doublet in Fig. 12.8.



For any of the ordinary glass combinations used in doublets, the
ratio 
P/
V is essentially constant, and the visual secondary spectrum
is about 0.0004 to 0.0005 of the focal length. Similarly, the secondary
spectrum of any achromatized combination of two separated compo-
nents can be shown to be

SS � [f 2 � B (L�2f ) ] (12.10)

where D is the airspace, B the back focus, and L � B � D is the length
from front component to the focal point. Again it is apparent that the
ratio 
P/
V is the governing factor. Note that in this case the sec-
ondary color of two spaced positive lenses is less than that of a thin
doublet of the same focal length; conversely, the secondary color of a
telephoto lens (positive front component, negative rear component) or
reversed telephoto is greater than the corresponding thin doublet.

There are a few glasses which will reduce the secondary spectrum,
for example, FK51, 52, or 54 used with a KzFS glass or an LaK glass
as the flint element will reduce the visual secondary spectrum to a
small fraction of the ordinary value. Note, however, that for most of
these pairs Va � Vb is small, and the powers of the individual elements
required for achromatism are higher than with an ordinary pair of
glasses. This increase in element power causes a corresponding
increase in the other residual aberrations. These glasses, with unusu-
al partial dispersions, generally work poorly in the shop, lack chemi-
cal stability, and cannot withstand severe thermal shock.

As mentioned in Chap. 7, calcium fluoride (CaF2, fluorite) may be
combined with an ordinary glass (selected so that Pa � Pb) to make an
achromat that is essentially free of secondary spectrum. It is also
worth noting that there are no ordinary glass pairs which will form a
useful achromat in the 1.0- to 1.5-�m spectral band; fluorite can be
combined with a suitable glass to make an achromat for this region.
Silicon and germanium are useful for achromats at longer wave-
lengths, as are BaF2, CaF2, ZnS, ZnSe, and AMTIR.

A triplet achromat can be used to reduce the secondary spectrum
without the necessity of exactly matching the partial dispersions as in
the doublet. If one plots the partial dispersion P against the V-value,
most glasses fall along a straight line. What is needed to correct sec-
ondary spectrum is a pair of glasses with the same partial P, but with
a significant difference in V-value. It turns out that in this sort of plot
one can synthesize a glass anywhere along a line connecting two glass
points by making a doublet of the two glasses. Thus one can arrange a
triplet so that two of the elements synthesize a glass with exactly the
same partial as the third glass. Some useful Schott glass combinations
are (PK51, LaF21, SF15), (FK6, KzFS1, SF15), (PK51, LaSFN18,


P
�
D 
V
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SF57); the power arrangement for these combinations is plus, minus,
and weak plus, respectively. Other glass manufacturers have equiva-
lent glass combinations. The thin lens element powers for a triplet
apochromat can be found from the following equations, which are for
a unit power (f � 1.0) system.
Define:

X � Va (Pb � Pc) � Vb (Pc � Pa) � Vc (Pa � Pb)

Then:

�a � Va (Pb � Pc) /X

�b � Vb (Pc � Pa) /X

�c � Vc (Pa � Pb) /X � 1.0 � �a � �b

See Fig. 14.2 for an example of an apochromatic triplet telescope 
objective.

A lens in which three wavelengths are brought to a common focus is
called an apochromat. Often this term also implies that the spherical
aberration is corrected for two wavelengths as well. By properly bal-
ancing the glass combinations given above one can achromatize the
triplet for four wavelengths; such lenses are called superachromats.*

Airspaced achromat (dialyte)

A widely airspaced doublet can be made achromatic, but the chromat-
ic correction will vary with the object distance; it will be achromatic
only for the design distance. The following equations will yield a sepa-
rated achromatic doublet which is corrected for an object at infinity.

�A �

�B �

D �

where f is the focal length, D is the airspace, and B is the back focal
length.

(1 � B/f )
��

�A

�VBf
��
B (VAB � VBf )

VAB
��
f (VAB � VBf )
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Athermalization

When the temperature of a lens element is changed, two factors affect
its focus or focal length. As the temperature rises, all the dimensions
of the element are increased; this, by itself, would lengthen the effec-
tive and back focal lengths. The index of refraction of the lens also
changes with temperature. For many glasses the index rises with tem-
perature; this effect tends to shorten the focal lengths.

The change in the power of a thin element with temperature is giv-
en by

� � � � ��
where dn/dt is the differential of index with temperature, and � is the
thermal expansion coefficient for the lens material. Thus for a thin
doublet

� �ATA � �BTB

where

T � � � ��
and � is the doublet power. For an athermalized doublet (or for one
with some desired d �/dt), we can solve for the element powers

�A �

�B � � � �A

To get an athermalized achromatic doublet, we can plot T against 1/V
for all the glasses under consideration. Then a line drawn between two
glass points is extended to intersect the T axis. The value of the d�/dt
for the achromatic doublet is equal to the doublet power times the val-
ue of T at which the extended line intersects the T axis. Thus one
desires a pair of glasses with a large V-value difference and a small or
zero T-axis intersection.

An athermal achromatic triplet can be made with three glasses as
follows:

�A �

�B �

�C �
�VC (TAVA � TBVB)
���

D

�VB (TCVC � TAVA)
���

D

�VA (TBVB � TCVC)
���

D

(d�/dt) � �TB��
TA � TB

dn
�
dt

1
�
(n � 1)

d�
�
dt

dn
�
dt

1
�
(n � 1)

d�
�
dt
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where D � VA (TBVB � TCVC) � VB (TCVC � TAVA) � VC (TAVA � TBVB),
Vn is the V-value of element n, and T is defined above.

12.6 The Diffractive Surface in Lens Design

A diffractive surface as used in lens design is a fresnel surface (as
shown in Fig. 9.15) “modulo 2�.” In other words, it is a fresnel surface
where the height of each step is such that the wave front is retarded
or stepped by exactly one wavelength. Thus the step height is 	/(n �
1), assuming that the surface is bounded by air. For a glass or plastic
surface (n ≈ 1.5), this is a step height of about two wavelengths, as
opposed to a step height on the order of tenths of a millimeter or more
for an ordinary plastic fresnel. The slope and shape of the fresnel
facets can be as defined by a sphere or an aspheric. Note that similar
results can be obtained with a local variation of the index of refraction.

Diffraction efficiency

The term kinoform indicates a surface with smooth facets. A curved-
surface kinoform theoretically can have 100 percent efficiency. A “linear”
(cone-shaped) kinoform can be 99 percent efficient. A “binary” surface
approximates the smooth fresnel facets with a stair-step contour pro-
duced by a high-resolution photolithographic process. The surface relief
is created by exposure through a series of masks. The number of levels
produced equals 2n, where n is the number of masks used, hence the
name binary. The efficiency (i.e., the percentage of light which goes in
the desired direction) of a binary surface is limited by the number of lev-
els which are used to approximate the ideal smooth contour of the fres-
nel facet. A one-mask, 2-level surface is 40.5 percent efficient; a
two-mask, 4-level surface is 81.1 percent efficient; a three-mask, 8-level
surface is 95.0 percent efficient; a four-mask, 16-level surface is 98.7
percent efficient; and an M-level surface is [sin(�/M)/(�/M)]2 efficient.
The theoretical efficiency of any diffraction surface, whether kinoform
or binary, will be reduced by any fabrication departures from the ideal
shape, such as rounding of sharp corners, etc.

Since the wave front is stepped or retarded at each diffractive fres-
nel step by exactly one wavelength for the nominal wavelength, it is
apparent that the coherent behavior of the system is preserved only for
the nominal wavelength. At this wavelength, the phase from the top of
one zone exactly matches that from the bottom of the preceding zone.
The surface is less efficient for other wavelengths, and thus the spec-
tral bandwidth over which a diffractive surface is useful is limited.
This limitation may show up as inefficiency or as unwanted diffractive
orders, ghosts, stray light, low contrast, etc. The efficiency at other
than the nominal wavelength (	0) is
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E � [sin � (1 � 	0/	) /� (1 � 	0/	) ]2

Over a bandwidth of (
	), the average efficiency is

ave E ≈ 1 � [� (
	) /6 	0]2

Manufacturability

The following expressions allow an estimate of the practicality or man-
ufacturability of a diffractive lens. As indicated above, the step height
is 	/(n � 1). The radial spacing distance from one fresnel step to the
next is approximately

Spacing ≈ R	/Y (n � 1) � F	/Y

where R is the diffractive surface radius of curvature, F is its focal
length, and Y is the radial distance from the axis. The minimum spac-
ing (at the edge of the diffractive lens) is

Min spacing ≈ 2	 (f/#) � 	/NA

where f/# � F/2Ymax � the relative aperture, and NA � n sin u � the
numerical aperture. The total number of fresnel steps or zones is

Number of steps ≈ D2/8	F

where D is the lens diameter. It is apparent that the longer the wave-
length and the weaker the power of the diffractive surface, the wider
and deeper are the steps, and the easier is the fabrication task.
Techniques used for fabrication include single-point diamond turning
(especially good for long-wave IR), ion-beam machining, electron-beam
writing, laser-beam writing, and photolithography (which is extreme-
ly difficult on curved surfaces but effective on plano surfaces). For
large commercial quantities, injection-molded plastic elements are an
economical choice. Another useful process is epoxy replication.
Applications of diffractive optics include hybrid (combined refractive
and diffractive) lenses, microlens (size about 50 �m) arrays, anamor-
phic arrays, prisms, beamsplitters, beam multiplexers, filters, etc.

The Sweatt model

From a lens design standpoint, an easy way to handle and understand
the use of a diffractive surface is through the Sweatt model. W. C.
Sweatt* showed that a raytrace model consisting of a very high index,
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zero-thickness lens could be used to predict the effect of a diffractive
surface; the higher the index, the closer the results of the raytrace
come to matching the exact diffraction results. An index of about
10,000 is a reasonable value to use. Since the diffractive effect is a
direct function of wavelength, the index of the model should vary as
the wavelength, and

n (	) � 1 � (n0 � 1) (	/	0)

where 	0 and n0 are the nominal wavelength and index, respectively.
Thus, for the visual region, using d, F, and C light, we have for

d-light at 0.5875618 �m,

nd � 10,001.00

F-light at 0.4861327 �m,

nF � 8,274.73

C-light at 0.6562725 �m,

nC � 11,170.42

and the Abbe V-value,

V � (nd � 1) / (nF � nC) � �3.45

The negative V-value results from the fact that the index rises with
wavelength instead of dropping as in ordinary refractive materials.
The partial dispersion is P � (nF � nd)/(nF � nC) � 0.5962. These
extremely unusual values make the diffractive surface a most singu-
lar optical material. This low-V-value (i.e., high dispersion) character-
istic of a diffractive device indicates that there will be very large
amounts of chromatic aberration when a diffractive surface is used
over a significant spectral bandwidth.

The achromatic diffractive singlet

If we assume a single element of BK7 (nd � 1.5168, V � 64.2, P �
0.6923), we can apply Eqs. 12.3 and 12.4 to determine the powers of
the singlet and the diffractive element which will produce an achro-
mat. The result is a power of �a � Va�/(Va � Vb) � �0.949� for the
BK7 element and �b � �0.051� for the diffractive element (where � is
the desired power of the achromat). The negative V-value of the diffrac-
tive surface produces an achromat where both elements have positive
power. If we allow the diffractive surface to be aspheric (in the actual
surface this is done by making the slope and shape of the fresnel facets
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correspond to those of an aspheric surface), we can produce a singlet of
the desired power which is corrected for spherical aberration, chro-
matic aberration, and coma. The necessary four degrees of freedom are
the power and bending of the singlet and the power and fourth-order
asphericity (or conic constant) of the diffractive surface.

The resulting design is shown in Fig. 12.11. The residual aberrations
(zonal spherical, spherochromatism, and secondary spectrum) can be
compared with those of the ordinary achromatic doublet shown in Fig.
12.8. Note that the sign of the secondary spectrum is reversed from
that of an ordinary doublet (because of the unusual P and V of the dif-
fractive surface) and that the spherochromatism is large, more than
twice that of the doublet of Fig. 12.8 (and is also of reversed sign). The
spherochromatism can be corrected by aspherizing the first surface
with a fourth-order deformation term in a manner analogous to adjust-
ing the airspace of the doublet in Fig. 12.10 (i.e., we change the rela-
tive heights at which the red and blue rays strike the diffractive
surface). The zonal spherical can be removed with a sixth-order defor-
mation term on the first surface. The use of an aspheric surface is an
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Figure 12.11 The spherical aberration and spherochromatism of a hybrid refractive-
diffractive singlet, efl � 100, f/3.0. Compare with the doublet of Fig. 12.8 (but note that
the scales for LA are different). Both the spherochromatism and secondary spectrum are
larger and of the opposite sign from Fig. 12.8. As indicated in the text, the spherochro-
matism and the zonal spherical can be eliminated easily by aspherizing the first surface
(which would be quite a feasible option if the lens were injection-molded from acrylic).



economically practical move, assuming that the lens is to be injection-
molded from plastic. The result is a lens whose only axial aberration
is about 0.17 mm of secondary spectrum.

Alternately, because photolithographic fabrication is most conve-
niently done on a flat surface, one might want to limit the lens shape
to a plano-convex form and use as degrees of freedom the lens index,
its radius, the power of the diffractive surface, and its asphericity. The
optimal index is about 1.55 for this lens. If the lens material is acrylic
(n � 1.492), and if we elect to control focal length, spherical, and chro-
matic (neglecting coma), the tangential coma at one degree off axis is
�0.0156; if the material is polystyrene (n � 1.590), it is �0.0101.

Achromatic diffractive singlets have been very satisfactorily used in
eyepieces, magnifiers, zoom camera lenses, and many other applica-
tions where the object field is of relatively uniform brightness. Their
compactness and light weight as compared with a glass achromat make
them very desirable for many applications such as head-mounted 
displays. Diffractive surfaces sometimes have proven less satisfactory
for systems where there is a high brightness source in (or near) the
field of view or a wide spectral bandwidth.

The apochromatic diffractive doublet

Since the unusual V-value and partial dispersion of the diffractive sur-
face are so far from the line of normal glasses in a P versus V plot, we
can easily produce an apochromatic lens using two ordinary glasses
plus a diffractive surface to eliminate the secondary spectrum.

The element powers for a three-element apochromat can be found
using the following equations:

X � Va (Pb � Pc) � Vb (Pc � Pa) � Vc (Pa � Pb)

�a � �Va (Pb � Pc) /X

�b � �Vb (Pc � Pa) /X

�c � �Vc (Pa � Pb) /X

where � is the power of the apochromatic triplet, Vi is the V-value, and
Pi is the partial dispersion of the ith element.

If we use acrylic (n � 1.4918, V � 57.45, P � 0.7014) and polystyrene
(n � 1.5905, V � 30.87, P � 0.7108) for elements a and b, and the dif-
fractive surface (n � 10,001, V � �3.45, P � 0.5962) for element c, we
get the following starting powers for the elements:

�a � �1.9544� (acrylic)

�b � �0.9640� (polystyrene)
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�c � �0.0096� (diffractive)

The lens can be corrected for marginal and zonal spherical aberration,
coma, chromatic, spherochromatic, and secondary spectrum using the
techniques outlined above. A drawback for this particular lens is that
the secondary spectrum varies with aperture and is corrected only at
one zone.

12.7 The Cooke Triplet Anastigmat

The Cook triplet is composed of two outer positive crown elements and
an inner flint element, with relatively large airspaces separating the
elements. This type of lens is especially interesting because there are
just enough available degrees of freedom to allow the designer to 
correct all of the primary aberrations. The basic principle used to flat-
ten the field curvature (i.e., the Petzval sum) is quite simple: the 
contribution that an element makes to the power of a system is pro-
portional to y�, and the contribution to the chromatic varies with y2�.
However, the contribution to the Petzval curvature is a function of �
alone and is independent of y. Now in a thin (compact) system, all the
elements have essentially the same value of y and the powers of the
elements are determined by the requirements of focal length and chro-
matic correction; consequently, the Petzval radius of a thin doublet is
often about �1.4f, and rarely exceeds 1.5 or 2 times the focal length.
However, when the negative elements of a system are spaced away
from the positive elements (so that the ray height y at the negative ele-
ments is reduced), the power of the negative elements must be
increased to maintain the focal length and chromatic correction of the
system. As a result, the overcorrecting contribution of the negative ele-
ment to the Petzval curvature is increased. Thus by the proper choice
of spacing, the Petzval radius can be lengthened to several times the
system focal length and the field proportionately “flattened.”

From Fig. 12.12, which shows a schematic triplet, we can determine
the available degrees of freedom. They are

1. Three powers (�a, �b, �c)

2. Two spaces (S1, S2)

3. Three shapes (C1, C3, C5)

4. Glass choice

5. Thicknesses

Of these, items 1, 2, and 3 will be of immediate interest; they total eight
variables. Item 4, glass choice, is an extremely important tool, but we
will reserve its discussion until later. Item 5, element thickness, is only
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marginally effective; in regard to the primary corrections, its effect
duplicates that of the spacings.

With these eight degrees of freedom, the designer wishes to correct
(or control) the following primary characteristics and aberrations.

1. Focal length

2. Axial (longitudinal) chromatic aberration

3. Lateral chromatic aberration

4. Petzval curvature

5. Spherical aberration

6. Coma

7. Astigmatism

8. Distortion

Thus, there are just the necessary eight degrees of freedom to control
the eight primary corrections.

Note that the fact that there are eight variable parameters does not
guarantee that there is a solution. The relationships involved are, in
several instances, nonlinear, as the thin-lens equations (Eqs. 10.8)
indicate. It is entirely possible to choose a set of desired aberration val-
ues and/or glass types for which there is no solution. On the other
hand, it is also possible that there are as many as eight solutions, as
will be seen in the following paragraphs.

Power and spacing solution. The first four items listed immediately
above can be seen (by reference to the thin-lens third-order aberration
equations) to be functions of element power and ray height (which is a
function of spacing); they are independent of element shape. Thus, it
is necessary that the powers and spaces be chosen to satisfy these four
conditions, which may be expressed as follows:

Power:

Desired � � � ∑y� (12.11)1
�
ya

1
�
f
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Axial color:

Desired ∑TAchC � ∑ (12.12)

Lateral color:

Desired ∑TchC* � ∑ (12.13)

Petzval sum:

Desired ∑PC � ∑ (12.14)

where the summation is over the three elements. These expressions
are essentially the same as those of Sec. 10.9, and the meanings of the
symbols are given there.

The four conditions above must be satisfied by the choice of five vari-
ables (three powers plus two spacings). There is one more variable than
necessary; this “extra” is utilized in a later step to control one of the
remaining aberrations (usually distortion). There are almost as many
ways of solving this set of equations as there are designers. Stephens*
has worked out the algebraic solution for the triplet, and his paper gives
explicit equations for the values of the powers and spaces. An iterative
approximation technique (which may be easily modified to apply to sys-
tems with more than three components) along the following lines is an
alternate method, and its description will help to understand the limits
and interrelationships involved in this design.

1. Assume a value for the ratio of the powers of elements c and a. This
will be the “extra” degree of freedom mentioned above. (K � �c/�a �
1.2 is a typical value.)

2. Choose a value (arbitrary) for �a. (In the absence of prior experi-
ence, �a � 1.5� is suitable.) This determines �c, since from step 1,
�c � K�a and also determines �b, since Eq. 12.14 can be solved for
�b when �a, �c, h, and ∑PC are known or assumed.

3. Choose a value for S1 (one-fifth to one-tenth of the focal length is
suitable).

4. Solve for the value of S2 which will satisfy Eq. 12.12 (assume that
u′k is equal to �ya). This is done by tracing a ray through elements
a and b to determine ya, yb, and u′b. Then find S2 to yield the value
of yc, which satisfies Eq. 12.12. (Note that S2 may have a negative
value on the first try.)

�
�
n

h2

�
2

yyp��
V

1
�
u′k

y2�
�
V

1
�
u′k
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5. Trace a principal ray (thin-lens paraxial) through the desired stop
position, which may be conveniently placed at element b to mini-
mize the labor. Again assume u′k as in 4 and determine ∑TchC*.

6. Repeat from step 3 with a new choice for S1 until ∑TchC* is as
desired. (As a second guess for S1, try the average of S1 and S2 from
the first try.)

7. Determine the system power �. If not as desired, scale the value of
�a used in step 2 and repeat from step 2 until a solution is obtained.

Graphs of the relationships between S1 and ∑TchC* and between �a

and � are useful in steps 6 and 7.

Element shape solution. When the element powers and spacings have
been determined, there are three uncommitted degrees of freedom,
namely the shapes of the three elements (plus the “extra,” K, mentioned
in step 1 above). These variables must be adjusted so that the spherical,
coma, astigmatism, and distortion are corrected to their desired values.
Referring to the thin-lens contribution equations of Sec. 10.9, the aber-
rations can be seen to be quadratic functions of the element shapes;
thus, a simultaneous algebraic solution cannot be used and some sort of
successive approximation procedure is necessary.

Thin-lens paraxial marginal and principal rays are traced through
the three elements. The principal ray is traced so that the aperture
stop is at lens b; both yp and Q for lens b will be zero.

1. Assume an (arbitrary) value for C1 and calculate TAC*a (the astig-
matism contribution) for element a by Eq. 10.8h (a value of C1 �
2.5� is a reasonable first choice).

2. Since the stop is located at element b, TACb will not change with
bending (Eq. 10.8o). Now solve Eq. 10.8h for the shape of element c,
that is, the value of C5, which will give TAC*c which will yield the
desired ∑TAC when combined with AC*a and ACb. Normally there
are two solutions for C5 and the more reasonable one is used.

3. Now CC*a and CC*c (the coma contributions) are calculated from
Eq. 10.8g. Since the equation for CCb is linear in C3 (Eq. 10.8n, since
Qb � 0), it can be solved for the unique value of C3 which will yield
the desired ∑CC*.

4. The value of ∑TSC (spherical aberration) is now determined from
Eq. 10.8m.

5. The procedure is repeated from step 1 with a new value of C1, and
a graph of ∑TSC is plotted against C1. The shape C1 for which ∑TSC
is equal to the desired value is chosen and the corresponding values
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of C3 and C5 are determined so that ∑TSC, ∑TAC*, and ∑CC* are
simultaneously as desired.

6. If ∑DC* (distortion) is within acceptable limits, well and good; if
not, a new power and space solution must be made with a different
value of K � �c/�a. The value of ∑DC* can be plotted for several val-
ues of K as an aid in effecting a solution.

Note that in step 5, there may be two, one, or no solutions for the
desired ∑TSC. The best triplets seem to result from cases where the
parabolic plot of ∑TSC just barely reaches the desired level. Step 6
also may have no, one, or two solutions. Thus, with two possible solu-
tions in each of steps 2, 5, and 6, there are, theoretically at least, eight
possible solutions for the thin-lens Cooke triplet. As indicated above, it
is also possible that for a given set of conditions, there may be no solu-
tion. Usually, however, there is only one “reasonable” solution; occa-
sionally there are two.

The next step is the addition of thickness to the design. Center
thicknesses for the crown elements are chosen to give workable edge
thicknesses; the second surface curvatures (C2, C4, and C6) are adjust-
ed to hold the thick-element powers exactly to the thin-lens powers.
Airspaces are chosen so that the principal points of the elements are
spaced apart by the thin-lens spacings. In this way, the thick-lens
triplet will have exactly the same focal length as the thin-lens version.

The thick lens is now submitted to a trigonometric raytrace analysis
and the values of the seven primary aberrations are determined. If (as
is likely) the aberrations are not as desired, a new round of design is
initiated, with the new “desired” thin-lens aberration values adjusted
to offset the difference between the raytracing results and the desired
final values. For example, if the original “desired” ∑TSC was �0.2 and
the raytracing yielded a marginal spherical, TAm � �0.2, the new
“desired” ∑TSC would be set at �0.4, assuming that the desired end
result was TAm � 0.0

Initial choice of desired aberration values. In general, the initial choice
for the “desired” third-order aberration sums should be small, under-
corrected amounts, since the higher-order aberrations are usually
overcorrecting. Spherical, Petzval, and axial chromatic follow this
rule. Since the Cooke triplet is relatively symmetrical, the residuals
of distortion, coma, and lateral color are small, and initial “desired”
values of zero are appropriate. The desired Petzval sum should be
definitely negative. For high-speed lenses, the Petzval radius is fre-
quently as short as two or three times the focal length; moderate-
aperture systems (f/3.5) usually have ! � �3f to �4f; slow systems
may have ! � �5f or longer. One reason for this relationship is that
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the flatter (less undercorrected) the Petzval surface is made, the
higher the element powers; hence the higher the residual aberra-
tions, especially zonal spherical. The value chosen for the desired
∑PC is also an important factor in determining whether or not there
is a solution for step 5 in the curvature determination process. The
“desired” astigmatism sum is best set slightly positive, between zero
and about one-third the absolute value of the Petzval sum, so that
the inward curvature of the Petzval surface is offset by the overcor-
rected astigmatism.

Glass choice. The choice of the glass to be used in the triplet is one of
the most important design factors. From field (Petzval) curvature con-
siderations, it is desirable that the positive elements have a high index
of refraction and the negative element a low one to reduce ∑�/N. As
usual, the V-value of the positive elements should be high and that of
the negative element low in order to effect chromatic correction. For
the positive elements, one of the dense barium crowns is the usual
choice, although the light barium crowns on one hand and the rare
earth (lanthanum) glasses on the other are frequently used. Although
triplet designs are possible with ordinary crown glass or even plastics,
their performance is relatively poor.

It turns out that the interrelated requirements of Eqs. 12.11 through
12.14 lead to long systems (i.e., S1 and S2 are large) when the difference
between the V-values of the positive and negative elements is large. A
lens with a large vertex length will, at any given diameter, vignette at a
smaller angle than will a short lens. Further, it turns out that the longer
the lens: (1) the smaller the spherical zonal and (2) the smaller the field
coverage (i.e., the higher-order astigmatism and coma are greater and
limit the angle over which a good image can be obtained when the lens
is long). Thus, long systems are appropriate for high-speed, small-angle
systems; short systems for small-aperture, wide-angle applications. As
a very rough rule of thumb, the vertex length of a triplet is frequently
equal to the diameter of the entrance pupil.

The length of the triplet can be controlled by the choice of the glass-
es used. For example, if a shorter system is desired, the substitution of
a flint with a higher V-value (or a crown with a lower V-value) will pro-
duce the necessary change. To get a longer system, use a higher V-val-
ue crown and/or a lower V-value flint. (However, note that a system
which is too long will have no solution for the element shapes. The ray
height on the negative element may be so low that its overcorrecting
contribution to the spherical aberration is insufficient to offset the
undercorrection of the positive elements simultaneously with the
requirements for coma and astigmatism correction as well as chro-
matic and Petzval.)
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Interestingly enough, this relationship between vertex length and
zonal spherical and field coverage is a general one and applies to most
anastigmats.* Thus, if an anastigmat design has too much zonal
spherical and more than enough angular coverage, one can simply
choose new glasses to lengthen the system and strike the desired 
balance between field and aperture, or vice versa. There are, of course,
limits to the effectiveness of this technique.

In general, the higher the index of the crown (positive) elements and
the lower the index of the flint, the better the design will be. In other
words, with all else equal, a triplet with a more positive index differ-
ence (n crown � n flint) will have a smaller zonal spherical and/or a
wider field coverage. See also Fig. 13.52 for the effect of index on 
aberrations.

Figure 10.9 showed a triplet of relatively high aperture and modest
field coverage. Figures 12.13 and 12.14 illustrate triplets of reduced
vertex length and increasingly smaller aperture and wider fields of
view. Needless to say, the Cooke triplet is best designed using an auto-
matic computer lens design program of the type described in Sec. 12.9.
However, the automatic design program can be better utilized and bet-
ter results will be obtained if the designer has mastered the informa-
tion in this section. Figures 14.9 and 14.10 also show Cooke triplet
designs. Figure 14.39 shows a triplet with an aspheric field corrector,
suitable for use in a point-and-shoot camera, and Fig. 14.41 shows an
infrared (8–14 �m) triplet. Figure 14.42 is another IR triplet-based
lens of very high speed (f/0.55).

12.8 A Generalized (Nonautomatic, Old-
Fashioned) Design Technique

The preceding sections have outlined specific design approaches for
three particular types of optical systems. This section will describe a
generalized approach to optical design. Because of the varied nature of
different types of optical systems, this description will be unnecessar-
ily elaborate for many simple cases and must, because of limitations of
space and knowledge, fall short of completeness for elaborate and spe-
cialized systems. The reader will recognize generalizations of most of
the procedures set forth in the preceding sections.

This section describes the design process as if it were to be executed
“manually,” i.e., without the benefit of a modern “automatic” optical
design software program. The aim of this section is not necessarily to
prescribe the operations indicated but to outline the structure of the
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Figure 12.13 A Cooke triplet anastigmat of moderate
aperture and coverage. Compare with Figs. 10.9 and
12.14. English Patent 155,640-1919. Focal length is
100 units. This design is of the type made for use in
slide projectors.

Figure 12.14 A Cooke triplet of small aperture and wide cov-
erage. Compare with Figs. 10.9 and 12.13. German Patent
287,089-1913. Focal length is 100 units.



basic design approach, including some techniques which may in fact be
a valuable supplement to understanding and executing the design
process.

General considerations. The first step in the design process is the orga-
nization of the requirements to be imposed on the optical system into
terms of aperture, focal length, field coverage, resolution (or blur spot
size), spectral bandwidth, transmission, mechanical or space limita-
tions, and the like. In some systems, e.g., telescopes, the preliminary
design may be profitably carried out member by member; if this is to
be done, requirements for the individual members are established.

The general configuration of the system is established next.
Ordinarily the designer will conduct a survey of known designs (books,
technical periodicals, the patent files, and the designer’s own experi-
ence are the primary sources) to determine whether the performance
requirements are within the “state of the art.” If so, the designer will
select a type of system which is just capable of meeting the require-
ments (i.e., the most “economical” choice) and will proceed to adjust its
parameters to achieve the optimum balance of correction for the par-
ticular application at hand. If the performance requirements are
beyond the capability of any known design, the designer will select a
design form which is felt to be “most likely to succeed.” The designer
will analyze it thoroughly to determine its shortcomings and then
attempt to improve its characteristics. In many instances, there is no
directly applicable prior art from which to begin further effort. In such
circumstances, a thorough analysis of the first-order (gaussian)
requirements is conducted and a system is invented, utilizing the basic
design principles exemplified in known designs on a piecemeal basis to
accomplish the necessary ends.

In the following paragraphs, we assume that the general design type
has been established, either by selection or invention. The next major
step in the design process is the correction of the primary aberrations,
or at least as many of them as are necessary and feasible. This proce-
dure has been accurately described as the art of solving a number (say
n) of second- (or higher-) order equations in m unknowns; one must
ascertain initially that m (the number of effective variables) exceeds or
equals n (the number of aberrations).

Manual correction of the primary aberrations. The powers and spacings
of the elements which are to comprise the system can usually be deter-
mined on a highly rational basis. First, the elements must be so
arranged as to provide the desired focal length, aperture, field, and so
on for the system. Throughout this entire design stage, the value of a
scale drawing cannot be overemphasized; such a drawing will prevent
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attempts to design impossible elements, such as those with negative
edge thickness, or with hyperhemispheric concave surfaces. If the ray
paths are roughed in (on a first-order basis), one is also less apt to
require magnifications and apertures which lead to slope or incidence
angles which exceed 90°.

The usual method for correction of the aberrations is bending the
elements, i.e., changing the shape of the elements while maintaining a
constant power and position. However, certain aberrations are unaf-
fected (or affected only slightly) by bending. These are axial (longitu-
dinal) chromatic aberration, lateral color, Petzval curvature, and, to a
certain extent, distortion. The chromatic aberrations and the Petzval
curvature must be corrected in the power and space layout if they are
ever to be corrected. The third-order contribution equations, especial-
ly the thin-lens versions, are most useful at this stage, and it is ordi-
narily a relatively straightforward procedure to adjust the system so
that the ∑TAchC, ∑TchC*, and ∑PC are equal to values which have
been selected as desirable (or at least acceptable). See Eqs. 12.11
through 12.14.

It then remains to correct the spherical, coma, astigmatism, and
distortion to their desired values. A number of alternate procedures
are often available at this step. Unless the designer has prior experi-
ence with the type of system under construction, or unless the design
effort is a minor modification of an existing design, it is probably best
at this stage to make a graph of the aberration contributions from
each element (or component) as a function of the element shape.
Then, from a set of such graphs, a region (or regions) in which a solu-
tion is possible can be selected. These graphs can be plotted from data
obtained by the use of the thin-lens contribution equations, the sur-
face contribution equations, or in some cases by direct raytracing. The
latter two methods are appropriate for electronic computer work; one
element at a time is bent and the changes in the final aberrations are
plotted. The thin-lens expressions have the advantage that the “n
equations in m unknowns” are explicitly that and can be handled ana-
lytically.

When a “region of solution” is selected (by whatever means), a
method of differential correction is usually applied. The partial differ-
entials of the aberrations against shape, �A/�C (or 
A/
C), are deter-
mined along with the values of the aberrations for a trial prescription.
The desired amount of change of each aberration (
A) is determined
from the analysis of a trial prescription and the necessary number (n)
of simultaneous equations of the general form


An � 
i � K

i � 1
� �i


Ci (12.15)
�An
�
�C
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are set up and solved to yield the required values of 
Ci. Because of the
nonlinearity of the equations (i.e., the partials vary as the shape is
changed), the first solution is seldom precise. However, the preselec-
tion of the region of solution limits the size of the 
C’s so that the lin-
ear simultaneous solution of Eqs. 12.15 is a good approximation; a
series of such solutions converges rapidly on the required design form.

It is sometimes advisable to limit the number of parameters used in
the technique described above. Because a limited number of aberra-
tions are to be controlled, the problem is simplified if only an equal
number of variables are used, provided that these variables are effec-
tive and admit of a solution. The preliminary graphs of the aberrations
(versus element shapes) and the subsequent selection of a region of
solution are strongly recommended as insurance against ineffective
parameters and insoluble sets of simultaneous equations.

Certain systems lend themselves to an iterative technique which can
be a powerful design tool. For example, assume that three aberrations,
A, B, and C are to be corrected by the adjustment of three parameters,
x, y, and z. An initial trial prescription is modified by changing one of
the parameters, say z, until one of the aberrations, say C, is “correct-
ed.” Then parameter y is arbitrarily changed and a new value of z is
determined to maintain the correction of C. Parameter y is varied in
this manner until the aberrations B and C are simultaneously correct-
ed. Then parameter x is changed; with each change of x, parameters y
and z are adjusted as above to hold the aberrations B and C at the
desired values. Parameter x is varied in this manner until aberration A
is brought to correction simultaneously with B and C. In such a process,
graphs of C means z, B versus y, and A versus x are quite useful.

If the thin-lens aberration expressions have been used in any of the
preceding steps, it is necessary to add thickness to the elements. This
is generally done by adjusting the secondary curvature of each thick
element to hold the thick-element power equal to the thin-lens-
element power. The spacing between elements is then adjusted so that
the spacing of the thick-element principal points is equal to the thin-
lens spacing. This method serves to retain the overall system power
and working distances at the same values as the thin-lens systems.
Some designers prefer to adjust the secondary curvatures to maintain
the Petzval curvature precisely. The exact procedure used to go from
thin to thick is not critical; what may be important is that the proce-
dure of introducing thickness be rigorously consistent (in order that
the differential trigonometric correction method will be accurate).

Trigonometric correction. When the third-order aberrations have been
brought to desired values, it is necessary to trace rays trigonometri-
cally to determine the actual state of correction of the system. It will
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usually differ by a small amount from that predicted by the third-order
aberrations. However, a step or two of differential correction as out-
lined five paragraphs above will usually bring the trigonometric cor-
rection home; in most systems, the change in the trigonometrically
determined aberrations is quite close to the change predicted by third-
order aberration calculations.

Reduction of residual aberrations. After the primary aberrations have
been brought to correction, the design is tested for residual aberra-
tions. The primary aberrations are generally corrected for only a sin-
gle zone of the aperture or field and can be expected to depart from
correction in all other zones, as previously discussed in Chapter 3.
Several general principles can be given for the reduction of residuals;
their variety and extent make a catalog of specific remedies too exten-
sive for inclusion.

If there are any “leftover” parameters that were not used in the cor-
rection of the primary aberrations, these may be systematically varied
and their effects on the residuals noted and used. In addition to the
obvious and continuously variable parameters of bendings, powers,
and spacings, the choice of glass types is often an effective leftover.
Also the possibility that more than one region of solution exists should
not be overlooked, since this is, in effect, an extra parameter.

An analysis of the source of the third-order surface contributions
will often pinpoint one or two surfaces or elements which are espe-
cially heavy contributors. The elimination or reduction of a single
large contribution will often reduce residual aberrations. This can be
accomplished by introducing a correcting element near the offender
(for example, convert a single element into a compound component,
perhaps an achromat), by splitting the offending element into two
elements whose total power equals that of the original, by raising the
index, or (infrequently) by shifting the offender to a location where
the incidence angles of the rays on its surfaces are reduced.
Compounding or splitting an element introduces two new variable
parameters: the ratio of the powers of the two elements (although the
best split ratio is often close to 50-50) and the shape of the added ele-
ment. An additional possibility is that a drastically different shape
for the troublesome element may reduce its contribution to an accept-
able level.

The specific remedies for spherochromatism, zonal spherical, and
field coverage set forth in Secs. 12.5 and 12.7 have fairly general
applicability. Another specific is the introduction of a zero-power
meniscus element or a concentric meniscus element into the system.
Depending on how and where it is used, a meniscus can be effective in
modifying zonal spherical, Petzval curvature, or astigmatism.
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An aspheric surface can be a powerful design tool for the reduction
of residuals or the elimination of primary aberrations (especially dis-
tortion, astigmatism, and spherical) which will yield to no other design
techniques. One should, if at all possible, temper one’s enthusiasm for
the easy way out which the aspheric surface represents with the
knowledge that several spherical elements may usually be added to a
design for less than the cost of producing a single precise aspheric sur-
face. As a consequence of this fact, aspherics are seldom used except
where absolutely necessary for space or weight considerations, or
where cost is no object (as in one-of-a-kind instruments), or where the
required precision of the surface is very low (as in molded condenser
elements). Although injection-molded plastic element and diamond-
turned surfaces are often aspheric, and glass aspherics can be molded,
tooling cost is the limitation here.

In general, where residuals are a problem, it is wise to reconsider
the initial power and space layout for the entire system. It is some-
times possible to revise the layout in such a way that the powers of
the elements or the “work” (y� or yp�) done by the elements can be
reduced. This is an extremely rapid and effective way of reducing
residuals. An initial choice of too small a value for the Petzval sum
will result in elements of high power and large residuals. A change to
allow a more inward-curving field is the obvious remedy for this situ-
ation for ordinary lenses.

Aberration balancing. The final stage in the optical design process con-
sists of balancing the aberrations, or “touching up” the design. Here
the experienced designer frequently departs from what may seem to be
the best state of correction in order to minimize the overall effects of
the residual aberrations. In the presence of zonal spherical, sphe-
rochromatism, and astigmatism, the interrelationships of the aberra-
tions with each other, and with the position selected for the focal
plane, often allow an improvement to be made by selecting a deliber-
ately uncorrected state. We have previously (Sec. 11.3) seen that the
best spherical correction as regards OPD occurs when the marginal
spherical is zero and the reference plane is shifted toward the zonal
focus; the minimum geometrical blur spot size (Sec. 11.7) requires that
the marginal spherical be undercorrected. Thus, if the application of
the system is such that a resolution significantly less than the diffrac-
tion-limited resolution is of prime importance, and if the zonal spher-
ical is large in terms of OPD, then an undercorrected marginal
spherical is in order. Except in a camera lens, an overcorrected mar-
ginal spherical is rarely desirable; it does permit a higher resolution
and reduces focus shift when the system is stopped down, but it
reduces the image contrast.
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Another reason for preferring a slightly undercorrected spherical is
that the oblique spherical aberration (y3h2) is almost always overcor-
rected and the axial undercorrection will counterbalance this tendency.
The overcorrected oblique spherical also causes the effective field cur-
vature to be more backward-curving than indicated by the xs and xt

curves given by Coddington’s equations (Eq. 10.5). This is especially
true for the tangential field curvature. For this reason the astigma-
tism is seldom made overcorrected enough to cause a backward-
curving tangential field; ordinarily one desires a correction somewhere
between xt � 0 and xt � xs � xp. Note that the focus position is usual-
ly chosen inside the paraxial focal plane and that the field curvature
should be judged with this in mind.

We have previously noted that the Petzval curvature in most anas-
tigmats is preferably left somewhat inward-curving in order to mini-
mize element powers and aberration contributions.

The obvious choice of the 0.707 zone of the aperture as the zone at
which to correct the longitudinal chromatic is rarely the best choice
unless the spherochromatism is small. In the presence of spherochro-
matism and an undercorrected zonal spherical, the inward shift of the
best focus from the paraxial focus allows the overcorrected spherical of
the blue light to produce a halo or blue haze in the image. This can be
eliminated, or reduced, by correcting the chromatic at a larger zone of
the aperture.

The reader should bear in mind that the preceding comments are
intended to apply to normal types of lenses in which (as is usually the
case) the higher-order residuals are somewhat larger than desirable.

12.9 Automatic Design by Electronic
Computer

The fantastically high computation speed of the electronic computer
makes it possible to perform a major portion of the optical design task
on an “automatic” basis. One possible approach is essentially a dupli-
cation of the process that a designer goes through in correcting the pri-
mary aberrations of a system. The computer is presented with an
initial prescription and a set of desired values for a limited set of aber-
rations. The machine then computes the partial differentials of the
aberrations with respect to each parameter (curvature, spacing, etc.)
which is to be adjusted and establishes a set of simultaneous equations
(Eqs. 12.15), which it then solves for the necessary changes in the
parameters. Since this solution is an approximate one, the computer
then applies these changes to the prescription (assuming that the solu-
tion is an improvement) and continues to repeat the process until the
aberrations are at the desired values. When there are more variable
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parameters than system characteristics to be controlled, there is no
unique solution to the simultaneous equations; in this case, the com-
puter will add another requirement, namely that the sum of the
squares of the (suitably weighted) parameter changes be a minimum.
This allows a solution to be found and has the added advantage that it
holds the system close to the original prescription. Since the solution
of simultaneous equations may call for excessively large changes to be
applied, the computer is usually instructed to scale down the changes
if they exceed a certain predetermined value.

This “simultaneous” technique is a useful one. Even modest-sized
computers are capable of handling this problem without difficulty and
several inexpensive computer programs of this type are available,
often based on third-order aberration contributions. Since the design-
er is in rather close control of the situation, this technique is, in effect,
simply an automation of conventional methods as described in the pre-
ceding section. Thus, the designer should have a fairly good knowledge
of the system, and the system must have a solution reasonably close to
the initial prescription. This type of approach is very efficient for mak-
ing modest changes in designs or for touching-up a design. It also
makes easy work of systems with exceedingly complex interrelation-
ships of the variables, such as the older meniscus anastigmats of the
Dagor or Protar type.

Fully automatic lens design optimization

There are many other approaches to automatic design; almost all of
them are characterized by the use of a “merit function.” The merit
function is a single numerical value which indicates to the computer
whether any given change has improved the lens or not. Obviously,
representing the total performance of a lens system by a single num-
ber is a rather tricky business and considerable care must be taken in
the choice of the merit function; at times it seems that the “design” of
the merit function is more demanding than the design of the lens
which the merit function is intended to represent. Some approaches
use a merit function of the following sort: A large number of rays are
traced from each of several points in the field of view. For each image
point, the distance of each ray intersection (with the image plane) from
the “ideal” location for that ray is computed and the sum of the squares
of these distances is taken. Then the sum of the sums for the several
image points is the merit function. Since the merit function will be
large if the image blur spot is large, it is apparent that a small value
of the merit function is desirable.

The construction of the merit function as described above is far from
the most desirable scheme of things, and in practice many refinements
are used. Since the outer portions of the field are frequently less criti-
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cal than the center, the individual sums may be weighted to take this
into account. A modest amount of computation will indicate that, in the
presence of a constant fifth-order spherical aberration, the smallest
value of the sum of the squares of the ray displacements does not rep-
resent the best solution from an OPD standpoint. One scheme uses a
reduced weighting of large ray displacements in an attempt to take
this into account. The choice of the “ideal” intersection point for the
rays (for off-axis points) is a complex matter; the use of the gaussian
image point is quite misleading if any amount of distortion is present.
Similarly, the use of the image-plane intersection of the principal ray
as the ideal point can yield a distorted evaluation in the presence of
coma. Frequently the separately computed values of distortion and lat-
eral chromatic aberration are added (suitably weighted) into the mer-
it function, and the computer selects the centroid of the blur spot as
the “ideal” point.

Other types of merit function are also widely used to characterize
the quality of a lens system. A few use the OPD, or wave-front aberra-
tion, as the merit function, taking the variance of the wave front for
several field points, after selecting the reference point (i.e., image
plane) so as to minimize the variance over the field. Another very
widely used approach allows the designer to tailor a merit function to
suit the application. The merit function entries may be ray displace-
ments, OPD, defocusing, field curvature, chromatic aberrations, the
slope, or the curvature of the ray intercept plot, the constructional
data of the lens, the ray heights or slopes, or the classical aberrations,
plus almost any mathematically possible combination of these.

The merit function, being a collection of aberrations and departures
from desired conditions, is obviously misnamed; it properly should be
called a defect function or error function. However, common usage has
established “merit function” as a well-understood term, and we will
use it here with the understanding that the smaller the merit function,
the better the image.

Almost all automatic-lens-design programs allow at least some
adjustment to the merit function, even if they do not allow the sort of
flexibility described above. Typically, even in a program of limited flex-
ibility, different parts of the aperture, field, or spectrum can be weight-
ed to suit the application and the design form. The general procedure
is to have the program optimize a design, for the designer to examine
the results, and then to adjust or alter the merit function in such a way
as to achieve the desired balance of aberrations and characteristics.

Automatic-lens-design programs operate this way: Each of the con-
struction parameters to be varied is changed (one at a time) by a small
amount. The corresponding change in each entry or aberration in the
merit function is calculated in order to obtain its partial derivative
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with respect to the parameter. Then equations of the form of Eqs.
12.15 are set up, one for each aberration or merit function entry.
Typically there are many more aberrations in the merit function than
there are effective variable parameters in the lens, so a “solution” is
made in the least-squares sense, i.e., the variable set is changed in
such a way as to minimize the sum of the squares of the differences
between the desired value of each aberration and the value predicted
by Eqs. 12.15. But Eqs. 12.15 are based on an approximation; the
assumption that the relationship between aberration and variable is a
linear one. We have seen in Chapters 3 and 10 that, even for third-
order aberrations, this is not so, and it is much less linear for the high-
er-order aberrations. At best then, the solution is an approximate one,
but probably significantly improved over the original lens form. At
worst, the nonlinearity of the relationships can cause the least-squares
process to come up with such an extreme change that the design is not
just worse, it may be a totally impossible form with near-zero radii
that the rays miss, or near-infinite spacings that cause similarly dis-
astrous results. This problem can be handled by adding to the merit
function the sum of the weighted squares of all the parameter changes.
This penalizes any large parameter changes and tends to stabilize the
process. The weighting can be adjusted to be large where the nonlin-
earity is a problem, and small where it is not. This is called damped
least squares, and with a few significant exceptions, is the basis of cur-
rent automatic lens design programs.

By repeating the approximate solution process until it converges,
these programs are capable of driving a rough preliminary design form
to the nearest local minimum of the merit function. Depending upon
the structure of the merit function, most lens designs have more than
one local minimum. Consider the “front” and “rear” meniscus camera
lens discussed in Sec. 12.2, or the Fraunhofer and Gauss forms of tele-
scope objectives (Secs. 12.4 and 12.5); these are simple design forms
where the merit function has two obvious local minima. An automatic
design program will find the minimum nearest to the starting design
form which it is given. There is no way that the user of such a program
can be certain that a minimum is the best one (i.e., a “global opti-
mum”). The solution space is n-dimensional, where n is the number of
variable parameters. In the simple designs discussed in this chapter it
was not impractical for us to do a limited, simplified exploration of the
solution space. In a design with 20 or 30 variable parameters it is a
quite different matter.

In any case, it is apparent that since the design program will seek
out the nearest minimum, the selection of the starting point for the
process is vitally important. In fact, once the merit function is defined
and weighted, the starting design form uniquely defines a single min-
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imum. Obviously the choice of the starting form is a critical factor.
Fortunately, it seems that with most merit functions, most nonsimple
design types have relatively broad, flat minima, and one can choose a
starting point over a fairly large volume in solution space and expect
a reasonably good result. An experienced lens designer uses knowledge
of successful design types and features to direct the computer to good
starting points. The novice designer should study the standard, classi-
cal design forms as an aid in selecting appropriate starting points.

The mathematics of this process are written up in many places. Two
which explain the basic operations are G. Spencer, “A Flexible
Automatic Lens Correction Procedure,” Applied Optics, vol. 2, 1963,
pp. 1257–1264, and W. Smith, in W. Driscoll (ed.), Handbook of Optics,
New York, McGraw-Hill, 1978.

12.10 Practical Considerations

The following is a partial list of certain design characteristics which,
although they may be quite beneficial to the performance of a design,
tend to have an undesirable effect on the difficulty and cost of fabrica-
tion. Thus, unless you enjoy being unpopular with the opticians who
must execute your designs, this list represents things which you
should assiduously avoid if at all possible.

1. Materials which are soft and easily abraded.

2. Materials which are thermally fragile and which may split from a
mild thermal shock, such as that encountered in blocking or wash-
ing under a hot or cold water tap.

3. Materials with low acid resistance or high stain characteristics.

4. Expensive materials. (Often you can find a similar, cheaper glass
which is nearly as good.)

5. Thin elements, i.e., those with a large ratio of diameter to the aver-
age thickness. Such elements can deform under the stress of block-
ing or polishing, making an accurate surface geometry almost
impossible to produce. Note that a negative element with a sub-
stantial edge thickness often can tolerate a center thickness which
would be too thin for a weaker element.

6. Thin-edged elements chip easily and, if processed at a diameter
larger than the finished one, may become sharp-edged during 
fabrication. Also a thin-edged element is difficult to mount 
satisfactorily.

7. A very thick element obviously requires more material and may
require an awkward arrangement when blocked. Visualize Fig.
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15.2 if the elements are as thick as the diameter. A thin lens with
the same radius can have more lenses blocked on a tool because
they can be placed closer together at the surface; with the thick
lens, there are large gaps between the elements at the surface
which make polishing difficult.

8. Very “strong” curves (i.e., with a large diameter-to-radius ratio)
lead to fewer elements blocked per tool and the correspondingly
increased processing costs, difficulty in polishing surfaces accu-
rately, and difficulty in testing the surface accuracy with a test
plate or interferometer.

9. Meniscus elements whose surfaces are concentric or nearly con-
centric with each other. A monocentric element must be ground
and polished so that the two surfaces are properly aligned during
these operations; it cannot be “centered” after polishing as an ordi-
nary element can.

10. Nearly equiconvex or equiconcave elements can cause trouble in
assembly because it is difficult to tell one side from the other, and
the element is liable to be mounted backward.

11. Weakly curved, nearly plane surfaces are more expensive to tool
and fabricate than a plane surface. It is almost always possible to
force such a design to a plane surface with little or no sacrifice in
image quality.

12. Precision bevels. If possible, avoid mounting from a beveled sur-
face. Use a loosely toleranced 0.5 mm by 45° chamfer to eliminate
sharp edges; this kind of edge break is almost free.

13. Avoid odd-angle precision bevels. Many shops are tooled for 45°,
30°, or 60°; other angles may require new tooling.

14. Cemented triplets and quadruplets are unpopular in some shops.

15. Tight scratch and dig specifications on surfaces which are not vis-
ible to the ultimate customer are usually a waste of money. With a
few exceptions (such as surfaces near an image plane or the optics
of a high-powered laser system), scratch and dig considerations
are purely cosmetic and have no functional effect (unless the lens
aperture is so small that a dig can actually obstruct a significant
fraction of the beam area).

16. Tight tolerances in general. See Chap. 15 for a discussion of effi-
cient tolerance budgeting.
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Exercises

The exercises for this chapter take the form of suggestions for individ-
ual design projects; as such, there can be no “right” answers, and none
are given. The effort involved in each exercise is considerable, and it is
likely that only those interested in obtaining first-hand experience in
optical design will wish to undertake these exercises. The casual read-
er will, however, be amply rewarded by mentally reviewing the steps
he or she would follow in attempting the exercises.

1 Design a symmetrical double-meniscus objective of the periscopic type.
Select a bending (a ratio of 3:2 for the curvatures is appropriate), determine
the proper spacing for a flattened field, and calculate the thin-lens third-order
aberrations for the combination. Analyze the final design by raytracing and
compare the results with the third-order calculations. The student may wish
to repeat the process for several additional bendings, perhaps including the
Hypergon (Fig. 12.4), and to compare the results of each, noting the variations
of aperture and coverage.

2 Design an achromatic doublet objective using BK7 (517:642) and SF2
(648:339). Correct the spherical aberration for an aperture of f/3.5. Raytrace
marginal and zonal rays in C, D, and F light to evaluate the axial image.
Compare the coma obtained by raytracing an oblique fan with the OSC calcu-
lation.

3 Design a telescope objective lens consisting of a BK7 singlet and a doublet
of BK7 and SF2. Vary the distribution of powers and the spacing to optimize
the correction of zonal spherical and spherochromatic.

4 Design a Cooke triplet anastigmat. For a minimal exercise, duplicate the
design of Fig. 12.13 using the same glasses and the same power and space lay-
out as a starting point. For a more ambitious project, design the same lens, but
derive the power and space layout without recourse to the data of the figure.
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The Design 
of Optical Systems: 

Particular

13.1 Telescope Systems and Eyepieces

The design of a telescopic system begins with a first-order layout of the
powers and spacings of the objective, erectors, field lenses, prisms, and
eyepiece, as required to produce the desired magnification, field of
view, aperture (pupil), eye relief, and image orientation. Then the indi-
vidual components are designed so that the telescope, as an entire sys-
tem, is corrected. Usually the eyepiece is designed first; the design is
carried out as if the eyepiece were imaging an infinitely distant object
through an aperture stop located at the system exit pupil. That is, the
rays are traced in the reverse direction from the direction in which the
light travels in the actual instrument. Usually a principal ray is traced
from the objective (or the aperture stop) through the eyepiece to locate
the exit pupil, then an oblique bundle can be traced in the reversed
direction (from the eye) to evaluate the off-axis imagery. Almost all
optical design is done in this manner, by tracing rays from long conju-
gate to short, largely for convenience, because the focus variations
(due to aberrations and small power changes) are smaller and more
readily managed at the short conjugate.

The erectors, if there are any, are usually designed next; their design
is frequently included in the eyepiece design by considering the erec-
tor and eyepiece as a single unit. (Alternatively, the erector may be
considered as a part of the objective; the choice is usually determined
by the location of the reticle.) Usually the objective is designed last and
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its spherical and chromatic aberrations are adjusted to compensate for
any undercorrection of the eyepiece. Note that prisms must be includ-
ed in the design process if they are “inside” the system, since they con-
tribute aberrations which must be offset by the objective and eyepiece.
Prisms can be introduced into the calculation as plane parallel plates
of appropriate thickness.

An eyepiece is a rather unusual system, in that it must cover a fair-
ly wide field of view through a relatively small aperture (the exit pupil)
which is outside the system. The external aperture stop and wide field
force the designer to use care with regard to coma, distortion, lateral
color, astigmatism, and curvature of field; the first three mentioned
can become unusually difficult, since even approximate symmetry
about the stop (which is used in many lens systems to reduce these
aberrations) is not possible. On the other hand, the small relative
aperture of an eyepiece tends to hold spherical and axial chromatic
aberrations to reasonable values. Typically an eyepiece is fairly well
corrected for coma for one zone of the field (a fifth-order coma of the
y2h3 type is common in wide-angle eyepieces) and the field is some-
times artificially flattened by overcorrected astigmatism which offsets
the undercorrected Petzval curvature. Lateral color may or may not be
well corrected; frequently some undercorrection exists to offset the
effect of prisms. There is almost always some pincushion distortion
apparent (note that when an eyepiece is traced from long to short con-
jugate, the sign of the distortion is reversed). An eyepiece can be con-
sidered “reasonably” corrected for distortion if it has 3 to 5 percent; 8
to 12 percent distortion is not uncommon in eyepieces covering total
fields of 60° or 70°. One way to eliminate this distortion is by the use
of aspheric surfaces, a not very attractive solution unless molded plas-
tic or glass is used. One should remember that, in many applications,
the function of the outer portion of the field of view is to orient the user
and to locate objects which are then brought to the center of the field
for more detailed examination. Thus, eyepiece correction off axis need
not be as good as that of a camera lens, for example.

Because the eyepiece is subject to a final evaluation by a visual
process, it is sometimes difficult to predict, from raytracing results
alone just what the visual impression will be. For this reason, it is fre-
quently useful to begin an eyepiece design on the lens bench, by mock-
ing up an eyepiece out of available elements. A series of mockups will
yield a good grasp of the more promising orientations and arrange-
ments of the elements. The designer can then use these as starting
points for the design effort with reasonable assurance that the visual
“feel” of the finished design will be acceptable.

Note that the conventional correction of distortion (where h � f tan $)
causes the apparent angular size of the image to change as it is
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scanned across the field. A distortion which yields the relationship h �
f $ will give a constant angular size; this is a common type of distor-
tion for many eyepieces.

Field curvature causes a “swimming” effect of the image as the eye
is scanned across the system pupil. Usually a field curvature of about
2 diopters or less (at the eye) is considered good; 4 diopters is about the
maximum acceptable.

The Huygenian eyepiece. The Huygenian eyepiece (Fig. 13.1a) consists
of two plano-convex elements, an eyelens and a field lens, with the
plane surface of each toward the eye. The focal plane is between the
elements. For a given set of powers of the elements, the spacing can be
adjusted to eliminate lateral color. The required spacing is approxi-
mately equal to the average of the focal lengths of the elements. The
only remaining degree of freedom is the ratio of powers between the
elements. This is used to eliminate coma (and thus artificially flatten
the field via the “natural” stop position, as discussed in Sec. 12.2).
Since the image plane is between the lenses and is viewed by the eye-
lens alone, it is not well corrected and is unsuitable for use with a ret-
icle. The eye relief of the Huygenian is often uncomfortably short.

The Ramsden eyepiece. The Ramsden eyepiece (Fig. 13.1b) also con-
sists of two plano-convex elements, but the plane surface of the field
lens faces away from the eye. The spacing is made about 30 percent
shorter than the Huygenian to allow an external focal plane, and for
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this reason lateral color is not fully corrected. Coma is corrected as in
the Huygenian by varying the ratio of field lens power to eyelens pow-
er. The Ramsden eyepiece can be used with a reticle.

The Kellner eyepiece. The Kellner (Fig. 13.1c) is simply a Ramsden
eyepiece with an achromatized eyelens to reduce the lateral color. It is
frequently used in low-cost binoculars.

The relative characteristics of the three simple eyepieces described
above are summarized in the table of Fig. 13.2. They are almost invari-
ably made in plano-convex form and little is gained by departing from
this form. Since these eyepieces are chiefly noted for their low cost, the
usual material for the single elements is common crown; indeed, they
are frequently made from selected window glass by grinding and pol-
ishing only the convex surface. In the Kellner eyelens, the index dif-
ference across the cemented face is critical; usually a light barium
crown is used to keep the overcorrection of the astigmatism from
becoming too large when a wide field of view is desired. Departure
from the plano-convex form, in favor of a biconvex shape, is not uncom-
mon in the Kellner eyepiece. The half-field covered by these eyepieces
is to the order of ±15°, more or less, depending on the performance
required.

The orthoscopic eyepiece. The orthoscopic eyepiece (Fig. 13.3a) con-
sists of a single-element eyelens (usually plano-convex) and a cement-
ed triplet (usually symmetrical). The eyelens is frequently of light
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barium crown or light flint glass and the triplet is composed of borosil-
icate crown and dense flint glass. This is a better eyepiece than the
preceding simple types and is used for half-fields of ±20° to ±25°. The
Petzval curvature is about 20 percent less than that of the Ramsden
or Kellner, although higher-order astigmatism causes a strongly back-
ward-curving tangential field at angles of more than 18° or 20° from
the axis. (This high-order astigmatism is the characteristic which lim-
its the field coverage of most eyepieces; some control can often be
achieved by lowering the index difference across cemented surfaces.)
The eye relief is long, to the order of 80 percent of focal length.
Distortion correction is quite good.

The symmetrical, or Plössl, eyepiece. This excellent eyepiece is com-
posed of two achromatic doublets (usually identical) with their crown
elements facing each other (Fig. 13.3b). It is usually executed in
borosilicate crown (517:642) and extra dense flint (649:338) glass,
although it can be improved a bit by raising the index of both ele-
ments. It shares the long eye relief (0.8F) and field characteristics of
the orthoscopic, but is in general a somewhat superior eyepiece, except
that its distortion is typically 30 to 50 percent greater than the ortho-
scopic. It is widely used in military instruments and as a general-
purpose eyepiece of moderate (to ±25°) field. A similar eyepiece with
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both flints facing the eye is occasionally used. See Fig. 14.7 for an
example of a symmetrical eyepiece.

The Erfle eyepiece. This eyepiece (Fig. 13.3c) is probably the most
widely used wide-field (±30°) eyepiece. The eye relief is long (0.8F), but
working distance is quite short. The Petzval sum is about 40 percent
less than the orthoscopic or symmetrical types because of the field-
flattening effect of the concave field lens surface, and distortion is
about the same as the orthoscopic (for the same angular field). The
type shown in Fig. 13.3c usually has undercorrected lateral color (for
use with erecting prisms) which can be reduced by use of an achro-
matic center lens as in Fig. 13.3d. Glasses used are usually dense bar-
ium crown and extra dense flint. An example of an Erfle eyepiece is
shown in Fig. 14.8.

Magnifiers. Magnifiers and viewer lenses are basically the same as
eyepieces, with one notable exception: There is no fixed exit pupil. This
means that the eye is free to take almost any position in space and
therefore the aberrations of the magnifier must be insensitive to pupil
shift. For this reason, magnifiers tend to be symmetrical in configura-
tion. Two plano-convex lenses with convex surfaces facing or a sym-
metrical (Plössl) construction are common for better-grade magnifiers.
Where cost is important and a single element must be used, the fol-
lowing arrangements are good. If the eye is always close to the magni-
fier, use a plano-convex form with the plano surface toward the eye. If
the eye is always far from the magnifier, use a plano-convex form with
the convex surface toward the eye. If the eye position is variable, as in
a general-purpose magnifier, an equiconvex form is probably the best
compromise. Figure 14.5 is an example of a doublet magnifier.

Note that the eyepieces of instruments which use an electronic
image tube, such as the Sniperscope, fall into the category of magni-
fiers, since they are used to view a diffuse image on the phosphor sur-
face of the image tube. As such they must be designed so that they
perform well with the eye in a wide range of locations.

The optics of tabletop slide viewers, “head-up displays,” or HUDs,
and many simulators not only fall into this category but also share the
requirement that both eyes view the image through a single optical
system. Such systems are called biocular (as opposed to binocular sys-
tems, in which both eyes are used, but in which each eye views the
image through a separate optical train). In a biocular system one must
not only be concerned about the effects of eye motion but must also be
concerned about any disparity between the images as seen by the two
eyes. The convergence, divergence, and dipvergence (the vertical dif-
ference in direction) required of the eyes as they view the image must
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be carefully considered in designing the system. Thus a biocular device
is designed for a pupil large enough to encompass both eyes plus any
head motion, although the image sharpness and resolution are deter-
mined by the aberrations of a pupil whose size is defined by that of the
viewer’s eye.

Diopter adjustment (focusing) of eyepieces. In binocular systems, one
eyepiece is usually focusable to compensate for any difference in focus
between the two eyes. The motion of the eyepiece is

� � 0.001f 2D millimeters

or

� � 0.0254f 2D inches

where f is the eyepiece focal length, and D is the shift of the image
position in diopters (relative to the second focal point of the eyepiece—
where the eye is presumed to be located). The usual adjustment range
is ±4 diopters.

Erectors. Erector systems come in all sizes and shapes. Occasionally
a single element may serve as an erector, or two simple elements in the
general form of a Huygenian eyepiece may be used, as in the terres-
trial eyepiece shown in Fig. 13.4a. This form of eyepiece is widely used
in surveying instruments, occasionally with an achromatic eyelens. A
popular erector for gun scopes is illustrated in Fig. 13.4b and consists
of a single element plus a low-power, overcorrecting doublet, often
meniscus in shape. Photographic objective systems are occasionally
used as erectors, symmetrical forms of the Cooke triplet, the Dogmar,
or the double-Gauss being the most popular. Probably the most wide-
ly used erector consists of two achromats, crown elements facing, with
a modest spacing between them.

As previously mentioned, erectors are usually designed in conjunc-
tion with either the eyepiece or objective of a telescopic system.
Considerable care should be taken in the first-order layout of any tele-
scope to be certain that the work load placed on the erector is not
impossibly large. The introduction of suitable field lenses is often nec-
essary to reduce the height of the principal ray at the erector, although
this does produce an undesirable increase in the Petzval curvature.
Note that many erectors have external pupils, often in the form of a
glare stop.

Objective systems. For most telescopic systems, the objective will be
an ordinary achromatic doublet, or one of the variations described in
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Sec. 12.5. A photographic-type objective may be used where a wide
field is desired, Cooke triplets and Tessars being the most commonly
used. A Petzval objective is useful when high relative apertures are
necessary; the construction of a Petzval objective (Sec. 13.3) is such
that its rear lens acts as a sort of field lens, and this characteristic is
occasionally useful. For high-power telescopes where it is desirable to
keep the system as short as possible, a telephoto type of construction
is valuable. The front component is an achromatic doublet and the rear
is a negative lens, either simple or achromatic. The focal length is usu-
ally 20 to 50 percent longer than the overall length of the objective.
Either the Petzval or telephoto type of objective can be used as an
internal focusing objective (Fig. 13.5), where focusing is accomplished
by shifting the rear (inside) component, making a more easily sealed
instrument. Surveying instruments and theodolites conventionally
use the telephoto form with the focusing lens located about two-thirds
of the way from the front component to the focal plane so that the sta-
dia “constant” will remain constant as the instrument is focused.
Alignment telescopes use a positive focusing lens of high power placed
near the focal plane at infinity focus; thus, a modest shift of the focus-
ing lens toward the front component allows the system to be focused at
extremely short distances, or even on the objective itself. Note that any
system which works over a wide range of magnifications (as this type
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Figure 13.4 Erector systems. (a) The four-element terrestri-
al erecting eyepiece. (b) Typical gunsight optical system. (c)
Symmetrical doublet erector.



of focusing lens does) should be designed so that the change of aberra-
tion contribution is small as the magnification is varied.

13.2 Microscope Objectives

Microscope objectives (Fig. 13.6) may be divided into three major class-
es: those designed to work with the object under a cover glass, those
designed to work with no cover glass, and immersion objectives, which
are designed to contact a liquid in which the object is immersed. All
types are designed by raytracing from the long conjugate to the short;
the effects of the cover glass (when used) must be taken into account
by including it in the raytrace analysis. Standard cover glass thickness
is 0.18 mm (0.16 to 0.19 mm, n � 1.523 ± 0.005, v � 56 ± 2).

Microscope objectives are designed to work at specific conjugates,
and their correction will suffer if they are used at other distances. For
cover glass objectives and immersion objectives, the standard distance
from object plane to image plane is 180 mm. For metallurgical types
(no cover glass), the standard distance is 240 mm. The chief effect of
changing the tube length or cover glass thickness from its nominal val-
ue is to overcorrect or undercorrect the spherical aberration; an objec-
tive which has been improperly adjusted at the factory may be
reclaimed by using a nonstandard tube length or cover glass if the
defect is not too serious.

Note that ordinary microscope objectives are designed to yield an
essentially perfect image, and aberrations (on axis at least) should be
reduced to well below the Rayleigh limit if at all possible. Micro-
objectives for projection or photography may be corrected with more
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Figure 13.5 Telescopic systems. (a) Typical surveying telescope with
negative focusing lens and terrestrial eyepiece. Note that the objective
is telephoto, in that its effective focal length is longer than the objec-
tive. (b) Alignment telescope. The strong positive focusing lens, when
shifted forward, allows the instrument to focus at extremely short dis-
tances.



emphasis on the outer portions of the field, depending on the exact
application for which they are intended.

Low-power objectives. These are usually ordinary achromatic doublets,
or occasionally three-element systems, as shown in Fig. 13.6a. The 32-
mm NA 0.10 or 0.12 is the most common and produces a magnification
of about 4�. A 48-mm NA 0.08 is also occasionally encountered. This
may be designed in exactly the same manner as the achromatic tele-
scope objective discussed in Secs. 12.4 and 12.5, except that the “object”
will be located at 150 mm (more or less) instead of at infinity.

Medium-power objectives. As shown in Fig. 13.6b, these are usually
composed of two widely spaced achromatic doublets. The most common
objective is the 10�, 16 mm, which is available in several forms. The
ordinary achromatic 10� objective has an NA of 0.25 and is probably
the most widely used of all objectives. The divisible or separable
(Lister) version is designed so that it can be used as a 16-mm or, by
removing the front doublet, as a 32-mm objective. This is accomplished
at the sacrifice of astigmatism correction, since both components must
be independently free from spherical and coma and thus no correction
of astigmatism is possible. An apochromatic 16-mm objective is also
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Figure 13.6 Microscope objectives. (a) Low-power achro-
matic doublet or triplet. (b) 10 � NA 0.25. (c) Amici
objective 20 � NA 0.5 to 40 � NA 0.8. (d) Immersion
objective. (e) Apochromatic 10 � NA 0.3. Shading indi-
cates fluorite (CaF2). (f) Apochromatic 50 � NA 0.95.



available with an NA of 0.3; fluorite (CaF2) is used in place of crown
glass to reduce the secondary spectrum.

The power layout for this type of objective is usually arranged so
that the product y� is the same for each doublet; in this way the
“work” (bending of the marginal ray) is evenly divided. Conventionally
the second doublet is placed midway between the first doublet and the
image formed by the first doublet. (Note that the preceding refers to
raytracing sequence—in use the “second” doublet is near the object 
to be magnified and the “first” doublet is nearer the actual image.)
This relatively large spacing allows the cemented surface of the second
doublet to overcorrect the astigmatism and flatten the field (assuming
the stop to be at the first doublet). This layout leads to a thin-lens
arrangement with the space about equal to the focal length of the
objective, the focal length of the first doublet approximately twice that
of the objective, and that of the second doublet about equal to that of
the objective. Note that this arrangement is similar to that of a high-
speed Petzval-type projection lens (see Fig. 13.24).

Ordinarily three sets of shapes for the two components can be found
for which spherical and coma are corrected. One form will be that of
the divisible objective, with the spherical and coma zero for each dou-
blet; this is usually the form with the poorest field curvature.

Aplanatic surfaces. If the surface contribution equation for the spher-
ical aberration of a single surface is solved for zero spherical, three
solutions are found. One case occurs when the object and image are at
the surface and is of little interest. A second is of more value; when
object and image both lie at the center of curvature, there is no spher-
ical aberration introduced (and the axial rays are not deviated). The
third case, usually called the aplanatic case, allows the convergence of
a cone of rays to be increased (or decreased) by a factor equal to the
index without the introduction of spherical aberration. It occurs when
any of the following relationships are satisfied.

L � R � � (13.1)

L′ � R � � � L (13.2)

U � I′ (13.3)

U′ � I (13.4)

� (13.5)sin U′
�
sin U

n′
�
n

n
�
n′

n′ � n
�

n′

n′ � n
�

n
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Note that if any of the above are satisfied, all are satisfied, and that,
since no spherical is introduced, if L � l, then L′ � l′. It is also worth
noting that coma is zero for all three cases and that astigmatism is
zero for the first and third cases and overcorrecting between.

High-power objectives. This principle is used in the “aplanatic front” of
an oil-immersion microscope. The object is immersed in an oil whose
index of refraction matches that of the first lens. R1 (as shown in Fig.
13.7) is chosen to satisfy Eq. 13.1; this results in a hyperhemispheric
form for the first element. R2 is chosen so that the image formed by R1

is at its center of curvature; R3 is chosen to satisfy Eq. 13.1. Note that
sin U is reduced by a factor of n at each element, and that the “apla-
natic front” reduces the numerical aperture of the cone of rays from a
large value (as high as NA � n sin U � 1.4) to a value which a more
conventional “back” system can handle.

The Amici objective (Fig. 13.6c) consists of a hyperhemispheric front
element combined with a Fig. 13.6b (Petzval) type of back combina-
tion. Since the Amici is usually a dry objective, the radius of the hyper-
hemisphere is frequently chosen somewhat flatter than that called for
by the aplanatic case to partially offset the spherical introduced by the
dry plano surface. The space between the hyperhemisphere and the
adjacent doublet is kept small to reduce the lateral color introduced by
the front element. The standard 4-mm 40� NA 0.65 to 0.85 objectives
are usually Amici objectives. The working distance (object to front sur-
face) is quite small in the Amici, to the order of a half millimeter. Since
there is a direct relationship between zonal spherical and working dis-
tance in this type of objective, the higher-NA versions tend to have
very short working distances.

The oil-immersion objective utilizes the full “aplanatic front” and
may be combined with a Fig. 13.6b type of back, as shown in Fig.
13.6d, or a more complex arrangement. Both the Amici and immersion
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Figure 13.7 The aplanatic front.
The object is immersed in a fluid
whose index matches that of the
hyperhemispheric first element.
R1 is an aplanatic surface. The
image formed by R1 is at the
center of curvature of R2. R3 is
an aplanatic surface of the same
type as R1.



types are frequently designed with fluorite (CaF2) crowns to reduce or
eliminate secondary spectrum. Some of the new FK glasses can serve
the same purpose.

Note that although the aplanatic front is a classic textbook case,
departures from the exact aplanatic form are common. For example, it
is possible to find a meniscus lens of higher power than the aplanatic
case which will introduce overcorrected spherical. This not only
reduces the ray-bending work that the back elements must accom-
plish, but also reduces the correction load as regards spherical aberra-
tion (but not chromatic). Aplanatic-front objectives have a residual
lateral color resulting from the separation of the chromatically under-
corrected front and the overcorrecting back. Special compensating eye-
pieces with opposite amounts of lateral color are used to correct this
situation.

Flat-field microscope objectives. The objectives shown in Fig. 13.6 are
all afflicted with a strongly inward-curving field. Such objectives can
yield extremely sharp images in the center of the field, but the deep
field curvature and/or astigmatism severely limit the resolution
toward the edge of even the relatively small field of the microscope.
Many flat-field types of objectives have their Petzval curvature
reduced by a thick-meniscus negative component placed in the long
conjugate. This may be an achromatized doublet as shown in Fig. 13.8,
or simply a thick singlet. The field-flattening effect is greater if the
negative-power element or surface is a large distance from the posi-
tive-power member. Often the balance of the objective is simply a stack
of positive components. The improvement in image quality at the edge
of the field is quite marked when compared to the standard type of
objective. Another desirable feature of this form of objective is a long
working distance from object to front lens. Note that this configuration
is the analog of the retrofocus or reversed telephoto camera lens. Many
flat-field objectives incorporate a construction similar to the thick-
meniscus doublets of the double-Gauss or Biotar form (see Fig. 13.14)
as a field-flattening device. Another technique is to convert the 
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Figure 13.8 Achromatized negative doublet in a flat-field microscope objective.



aplanatic hemispheric or hyperhemispheric front element to a menis-
cus element. The concave surface is close to the object plane and acts
as a “field flattener.” Its power contribution (y�) is small because the
marginal ray height (y) is small when close to the object plane, but the
concave surface introduces a significant positive, backward-curving
Petzval contribution. The commercial brand names of microscope
objectives of this type usually incorporate the letters “plan” in some
form. Figure 14.28 shows a high-power flat-field objective.

Reflecting objectives. Objectives for use in the ultraviolet or infrared
spectral regions are frequently made in reflecting form, because of the
difficulty of finding suitable refracting materials for these spectral
regions. The central obscuration required by such a construction will
modify the diffraction pattern of the image, significantly reducing the
contrast of coarse targets and improving the contrast slightly for fine
details, as indicated in Chap. 11.

The basic construction of a reflecting objective is shown in Fig.
13.9a; it consists of two monocentric (or nearly monocentric) spherical
mirrors in the Schwarzschild configuration (see Sec. 13.5). If both mir-
rors have a common center of curvature at the aperture stop, the sys-
tem can be made free of third-order spherical, coma, and astigmatism;
the focal surface is then a sphere centered on the aperture. The infi-
nite conjugate case can be described by the following expressions (for
a focal length f ):

Space between mirrors

d � 2f (13.6)

Convex radius

R2 � (�5� � 1)f (13.7)

Concave radius

R1 � (�5� � 1)f (13.8)

R1-to-focus distance

� ( �5� � 2)f (13.9)

R1 clear aperture

y1 � (�5� � 2)y2 (13.10)

Fractional area obscuration

� 15 (13.11)
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There are a number of variations on this basic form, some with less
obscuration, some with reduced high-order spherical aberration.

The resulting system not only has zero third-order spherical, but
even the higher orders tend to be exceedingly small; by proper choice
of parameters, a delightfully simple but nonetheless useful objective
can be obtained. The two-mirror system is limited to about 35� at NA
� 0.5. For higher magnifications and numerical apertures, it is neces-
sary to introduce additional refracting elements to maintain correc-
tion, as indicated in the sketch of the 50� NA 0.7 ultraviolet objective
in Fig. 13.9b. Aspheric surfaces have also been utilized. The added ele-
ments can also serve to reduce the central obscuration or to flatten 
the field.

13.3 Photographic Objectives

In this section, we will outline the basic design principles of the pho-
tographic objective, and for this purpose we will classify objectives
according to their relationship to, or derivation from, a few major cat-
egories: (a) meniscus types, (b) Cooke triplet types, (c) Petzval types,
and (d) telephoto types. These categories are quite arbitrary and are
chosen for their value as illustrations of design features rather than
any historic or generic implications.

Meniscus anastigmats. In this category, we include those objectives
which derive their field correction primarily from the use of a thick
meniscus. As mentioned in Secs. 12.1 and 12.2, a thick-meniscus ele-
ment has a greatly reduced inward Petzval curvature in comparison
with a biconvex element of the same power; indeed, the Petzval sum
can be overcorrected if the thickness is made great enough. The sim-
plest example of this type of lens is the Goerz Hypergon (Fig. 12.4)
which consists of two symmetrical menisci. Because the convex and
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Figure 13.9 Reflecting microscope objectives. (a) Concentric 30 � NA 0.5. (b) Ultraviolet
50 � NA 0.7. Fused quartz and calcium fluoride are used for the refracting elements.
(Courtesy of D. Grey.)



concave radii are nearly equal, the Petzval sum is very small, and the
fact that the surfaces are nearly concentric about the stop enables 
the lens to cover an extremely wide (135°) field, although at a very low
aperture (f/30).

To obtain an increased aperture, it is necessary to correct the spher-
ical and chromatic aberrations. This can be accomplished by the addi-
tion of negative flint elements, as in the Topogon lens, Fig. 13.10. Note
that the construction of this lens is also very nearly concentric about
the stop; lenses of this type cover total fields of 75° to 90° at speeds of
f/6.3 to f/11.

Attempts to design a system consisting of symmetrical cemented
meniscus doublets in the latter half of the nineteenth century were
only partially successful. If the spherical aberration was corrected by
means of a diverging (i.e., with negative power) cemented surface, the
higher-order overcorrected astigmatism necessary to artificially flat-
ten the tangential field tended to become quite large at wide angles. If
a high-index crown and low-index flint were used to reduce the Petzval
field curvature, the resulting collective cemented surface was inca-
pable of correcting the spherical. In 1890, Rudolph (Zeiss) designed the
Protar, Fig. 13.11, which used a low-power “old” achromat (i.e., low-
index crown, high-index flint) front component and a “new” achromat
(high-index crown and low-index flint) rear component. The dispersive
cemented surface of the front component was used to correct the
spherical, while the collective cemented surface of the rear kept 
the astigmatism in control. Note that the components are thick menis-
ci, which allows reduction of the Petzval sum, while the general 
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Figure 13.10 The Topogon lens (U.S. Patent
2,031,792-1936) covers 90° to 100° at a speed 
of f/8.

Figure 13.11 The Zeiss Protar (U.S. Patent
895,045-1908).



symmetry helps to control the coma and distortion. Lenses of the
Protar type cover total fields of 60° to 90° at speeds of f/8 to f/18.

A few years later, Rudolph and von Hoegh (Goerz), working inde-
pendently, combined the two components of the Protar into a single
cemented component, which contained both the required dispersing
and collective cemented surfaces. The Goerz Dagor is shown in Fig.
13.12, and is composed of a symmetrical pair of cemented triplets.
Each half of such a lens can be designed to be corrected independent-
ly so that photographers were able to remove the front component to
get two different focal lengths. A great variety of designs based on this
principle were produced around the turn of the century, using three,
four, and even five cemented elements in each component, although
very little was gained from the added elements. Protars and Dagors
are still used for wide-angle photography because of the fine definition
obtained over a wide field, especially when used at a reduced aperture.
See Fig. 14.14 for an example of a Dagor design.

The additional degree of freedom gained by breaking the contact of
the inside crowns of the Dagor construction proved to be of more val-
ue than additional elements. Lenses of this type (Fig. 13.13) are prob-
ably the best of the wide-angle meniscus systems and cover fields up
to 70° total at speeds of f/5.6 (or faster for smaller fields). The Meyer
Plasmat, the Ross W. A. Express, and the Zeiss Orthometar are of this
construction, and recently excellent 1:1 copy lenses (symmetrical) have
been designed for photocopy machines. Note that the broken contact
allows the inner crown to be made of a higher-index glass.

The design of the thick-meniscus anastigmats is a complex under-
taking because of the close interrelationship of all the variables. In
general the exterior shape and thickness are chosen to control the
Petzval sum and power, and the distance from the stop can be used to
adjust the astigmatism. However, the adjustment of element powers 
to correct chromatic inevitably upsets the balance, as does the bending
of the entire meniscus to correct spherical. What is necessary is one
simultaneous solution for the relative powers, thicknesses, bendings,
and spacings; an approach of the type described in Secs. 12.7 and 12.8
for the simultaneous solution of the third-order aberrations is ideally
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Figure 13.12 The Goerz Dagor (U.S. Patent
528,155,1894). The glasses used are 613:563,
568:560, and 515:547, from the left. The con-
struction is symmetrical about the stop.



suited to this problem, and the automatic computer design programs
make easy work of it.

The efforts of designers in this direction over the past 75 years have
been well spent, and it is exceedingly difficult to improve on the best
representative designs in this category unless one utilizes the newer
types of optical glass (e.g., the rare earth glasses).

The double-Gauss (Biotar) (Fig. 13.14) and the Sonnar types (Fig.
13.15) of objectives both make use of the thick-meniscus principle,
although they differ from the preceding meniscus types in that they
are used at larger apertures and smaller fields. The Biotar objective in
its basic form consists of two thick negative-meniscus inner doublets
and two single positive outer elements as shown in Fig. 13.14. This is
an exceedingly powerful design form, and many high-performance
lenses are modifications or elaborations of this type. If the vertex
length is made short and the elements are strongly curved about the
central stop, fairly wide fields may be covered. Conversely, a long sys-
tem with flatter curves will cover a narrow field at high aperture. One
possible “manual” design approach is as follows:

1. Select an appropriate vertex length, based on considerations of aper-
ture and field coverage. Prior art is useful in this regard. Usually this
length is almost filled with glass, in that the first and last airspaces
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Figure 13.13 The Zeiss Ortho-
metar (U.S. Patent 1,792,917).
Constructional data and aberra-
tion curves for a focal length of
100.



are minimal and the edge clearance between the central flints is
often small. Baker, in U.S. Patent 2,532,751, suggests a rule of
thumb for the total thickness of the two meniscus doublets plus the
central airspace: for narrow fields (less than ±10°), a value of 0.6 to
0.7 times the focal length; for moderate fields (between ±10° and
20°), 0.5F to 0.6F; for fields larger than ±20°, a value of 0.4F to 0.5F.

2. Select glass types. Crowns are usually high-index barium or lan-
thanum crowns. Flints are usually lower in index by several hun-
dredths, although higher-index flints are not uncommon. The
difference in V-value can be used to shape the cemented surfaces;
usually surface 4 is made concave to the stop and surface 6 convex
to the stop.

3. Make a rough layout of thickness and curvature. Prior art is a use-
ful guide. Use R5 and R6 to adjust the Petzval sum and vary R4 and
R7 to correct the axial and lateral color as desired.

The Design of Optical Systems: Particular 457

Figure 13.14 The double-Gauss (Biotar) objective (U.S.
Patent 2,117,252-1938). Constructional data and aberra-
tion curves for a focal length of 100.

Figure 13.15 The Sonnar-type objective.



4. Use the third-order surface contributions to effect a solution for the
desired ∑SC, ∑CC*, ∑AC*, and ∑DC*. This can be handled by plot-
ting the contribution of each component against its shape, locating
a region of solution, and applying a differential correction tech-
nique.

5. A trigonometric check and differential correction complete the pri-
mary phase of the design.

6. Note that there are many unused degrees of freedom remaining.
The distribution of power from front to back elements and the dis-
tribution of power between inside and outside crowns may be sys-
tematically varied within rather broad limits. The glass and
thickness choices are subject to revision as well. Each of these will
have an effect on residuals and higher-order aberrations.

7. The following comments may be helpful:
a. Oblique spherical (a fifth-order aberration which is characteris-

tic of these lenses and causes spherical to vary with obliquity,
i.e., as y3h2) is usually troublesome, causing an off-axis overcor-
rection which reduces image contrast. This comes from the large
angles of incidence at surface 5 for the upper rim ray and at sur-
face 6 for the lower. This can be reduced (at the expense of other
corrections) by increasing the central airspace or by curving the
system strongly about the stop to allow a more concentric pas-
sage of the rays through these surfaces, or by reducing the thick-
ness of the doublets which will tend to force a more curved
configuration on them (and also increase the zonal spherical.)
Making the cemented surfaces more collective also tends to
reduce the oblique spherical. Vignetting is often used to elimi-
nate the tangential oblique spherical, but the sagittal oblique
spherical cannot be vignetted out.

b. The longitudinal position of surface 7 can be used to control
spherochromatism. A shift to the right will reduce the spherical
overcorrection of blue light relative to red light.

c. If the index difference across the cemented surfaces is small, the
adjustments of R4 and R7 for chromatic correction will have a cor-
respondingly small effect on the monochromatic aberrations.

d. The thickness of the cemented doublets (especially the front) has
a strong effect on spherical aberration. Increasing the thickness
leads to undercorrection, and vice versa. This sensitivity is a
common characteristic of thick-meniscus systems which,
although it makes fabrication difficult, is useful as a design tool.

While the first three steps outlined above are those one might uti-
lize in starting a double-Gauss design, steps 4, 5, and 6 can be nicely
handled by an automatic design program.
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Common elaborations of the Biotar format include compounding the
outer elements into doublets or triplets or converting the meniscus
doublets into triplets. Frequently the outer elements are split (after
shifting some power from the inner crowns) in order to increase the
speed. Some recent designs have advantageously broken the contact at
the cemented surface, especially in the front meniscus.

One may also double up on the inner meniscus doublets. In extreme
cases all the elements of the Biotar can be duplicated, leading to a 12-
element design with two front singlets, two front inner doublets, two
rear inner doublets, and two rear singlets. Another interesting varia-
tion (the principle of which can be used in any design with a large
enough airspace) is the insertion of a low- or zero-power doublet into
the center airspace. The glasses of this doublet are chosen to have the
same or nearly the same index and V-value, but significantly different
partial dispersions. The low-power and matching index and V-value
mean that the effect on most aberrations is negligible, but the partial
dispersion difference can be arranged so that the secondary spectrum
of the lens is reduced. There are several pairs of dense flint glasses
which are suitable for this purpose.

As indicated above, the double-Gauss (Biotar) is an extremely pow-
erful and versatile design form. It is the basis of most normal focal
length 35-mm camera lenses and is found in many applications where
extremely high performance is required of a lens. It can be made into
a wide-angle lens or can be modified to work at speeds in excess of f/1.0
with equal facility. Additional examples of double-Gauss designs are
presented in Figs. 14.32, 14.33, 14.34, 14.35, and 14.36.

Airspaced anastigmats. These are systems which utilize a large sepa-
ration between positive and negative components to correct the
Petzval sum. Although it is historically incorrect in several instances,
from a design standpoint it is useful to view these lenses as derivatives
from the Cooke triplet, Fig. 13.16 (see also Sec. 12.6).

The Tessar (although actually derived from a meniscus-type lens)
may be regarded as a triplet with the rear positive element com-
pounded; the classic form of the Tessar is shown in Fig. 13.17. The
additional freedom gained by compounding may be regarded as simply
a means of artificially generating an unavailable glass type by com-
bining two available glasses; alternatively, one may utilize the refrac-
tive characteristics of the cemented interface to control the course of
the upper rim ray, which is affected strongly by this surface. The
Tessar formulation, either as shown, or with the doublet reversed, or
even with the front element compounded, is utilized when a perfor-
mance a bit beyond that of the Cooke triplet is required. The reversed
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doublet form is usually better when high-index rare earth glasses are
utilized. Figures 14.16 and 14.17 are additional examples of Tessar
designs.

A further example of the compounding of the elements of the basic
triplet is the Pentac (or Heliar) type, Fig. 13.18, which is simply a
symmetrical extension of the Tessar principle. A Heliar design is
shown in Fig. 14.18. In the Hektor (Fig. 13.19), all three elements are
compounded and the speed can be raised to f/1.9 with fields to the
order of ±20°. Many “compounded triplets” make use of what is some-
times called a “Merté” surface; the cemented surface of the negative
component of the Hektor is an example of such a surface. This is a
strongly curved (usually cemented) collective surface so arranged
that the angle of incidence increases rapidly toward the margin of
the lens. Such a surface contributes a modest amount of undercor-
recting spherical to the rays near the axis, since the index break
across the surface is not large. As the angle of incidence rises (and 
it may approach 45°), because of the nonlinearity of Snell’s law, 
the spherical aberration contribution rises even more rapidly, and
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Figure 13.16 The Cooke triplet.

Figure 13.17 The Tessar objective
(U.S. Patent 1,588,073-1922).
Construction and aberration data
for a focal length of 100.



the undercorrecting effect dominates the marginal zone. The result is
a spherical aberration curve which shows not only negative third-
and positive fifth-order aberration, but a sizable amount of negative
seventh order as well. The spherical aberration shown in Fig. 13.19
is a rather extreme example of this technique. This is an approach
which obviously must be used with discretion, since large amounts of
high-order aberration are delicately balanced. Such a surface is best
located near the stop to minimize the disparity of its effects on the
upper versus lower rim rays; otherwise, the off-axis ray intercept
curves may tend toward a very unpleasant asymmetry. A similar
design is shown in Fig. 14.19.
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Figure 13.18 The Pentac-Heliar anastigmat.

Figure 13.19 The Hektor anastigmat (German Patent
526,308-1930). The spherical aberration curve shows a
large seventh-order component which originates at the
strongly curved fifth surface: focal length, 100.



Notice that in both Figs. 13.17 and 13.19, the doublets are composed
of a positive crown with a higher index than the negative flint. The
inward-curving Petzval contribution of such a doublet is much less
than that of a single-lens element. And of course the undercorrected
chromatic of a singlet is reduced or eliminated, since the doublet is at
least partially achromatized. Remembering that the Petzval contribu-
tion is proportional to �/n, it is apparent that the compounding of
these elements produces a component which is equivalent to a singlet
with both a high index and a high V-value. (This is true for the posi-
tive doublets; of course, the reverse is true for a negative doublet.)

Note that in almost all cases where a doublet is used in an anastig-
mat, it is a “new achromat,” with the crown index higher than the flint
index, yielding a converging cemented surface. This construction tends
to have at least some of the above-mentioned “Merté” effect on the
higher-order spherical, but the cemented surface does not correct the
third-order spherical as the diverging cemented surface of the “old
achromat” doublet does.

Another basic technique for the reduction of the residual aberrations
involves splitting the individual elements into two (or more) elements.
A single crown element has about five times as much undercorrected
spherical as a two-element lens of equivalent power and aperture
when both elements are shaped for minimal spherical (see Fig. 13.53).
Thus, a split allows the contributions of the other elements of the sys-
tem to be reduced, resulting in a corresponding decrease in higher-
order aberrations. Ordinarily the crown elements of a triplet are split
when a larger aperture is desired; Figs. 13.20 and 13.21 are examples
of this technique. Since it requires a fairly long system and high speed
to make this technique effective, the angular coverage of such systems
is usually modest. However, by compounding the split elements, excel-
lent combinations of aperture and field have been obtained from these
forms. Splitting the front crown is usually more profitable than split-
ting the rear, since the astigmatism at the edge of the field is better
controlled in the split-front types, and the meniscus shape is beneficial
for the Petzval field curvature. Although less frequently encountered,
element splitting can also be effective to a limited degree in extending
field coverage. Additional variants on the split-crown triplets can be
found in Figs. 14.24, 14.25, 14.26, and 14.27.

Split-flint triplets (Fig. 13.22) should really be regarded as thick-
meniscus systems with an air lens separating the crown and flint of
each half; indeed this was their historical derivation. This form is not
especially notable for reduced spherical zonal as are the split-crown
types, but some of the finest general-purpose photographic objectives
(e.g., the f/4.5 Dogmar and Aviar lenses) have been of this construction.
The general symmetry of this design lends itself to a wider angular
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Figure 13.20 Split-rear crown triplet (U.S. Patent
1,540,752-1924); focal length, 100.

Figure 13.21 Split-front crown triplet (English Patent
237,212-1925); focal length, 100.



coverage than do the split-crown types, although, as in most “triplet-
derived” forms, the limit of coverage is often sharply defined and
image quality tends to fall off rapidly beyond the stigmatic node. (This
last comment is less true of systems where the crown-flint spacing is
small, since these types are closer to the meniscus lenses than to
triplets.) Figure 14.15 is another example of the Dogmar. Many excel-
lent process and enlarging lenses are based on this format. Process
lenses of this type can be made with glasses of unusual partial disper-
sions in order to correct or reduce secondary spectrum. Such lenses
usually have the letters “apo” in their trade names to denote apochro-
matic or semiapochromatic correction.

Lenses for close conjugate work, such as enlarger lenses, are often
airspaced anastigmats. They differ from camera objectives primarily
in that they are designed for low magnification ratios, rather than for
infinite object distances. Most camera objectives maintain their cor-
rection down to object distances to the order of 25 times their focal
length, and some do well at even shorter distances. Enlargers, howev-
er, are frequently used at magnifications approaching unity, and
enlarging lenses are usually designed at conjugate ratios of 3, 4, or 5.
A lens which is approximately symmetrical (such as the Dogmar)
makes a good enlarger lens since it is a bit less sensitive to object-
image distance changes. Compounded triplets of approximately sym-
metrical construction are also used, and the Tessar formula is widely
used because of its wide field of coverage and relatively simple and
inexpensive construction.
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Figure 13.22 The Dogmar anas-
tigmat (U.S. Patent 1,108,307-
1914); focal length, 100.



Petzval lenses. The original Petzval portrait lens (Fig. 13.23) was a
relatively close-coupled system consisting of two achromatic doublets,
the rear doublet with broken contact, with a sizable airspace between.
It covered a modest field at a speed of about f/3. The modern version,
often referred to as the Petzval projection lens because of its wide-
spread use as a motion picture projection objective, utilizes a larger
airspace (almost equal to its focal length) and covers half-field of ±5°
to ±10° at speeds up to f/1.6. This type of system (Fig. 13.24) is noted
for the excellence of its correction on axis, and also for its strongly
inward-curving field. The field is artificially flattened by overcorrect-
ed astigmatism which is introduced at the cemented surface of the
rear doublet. A typical formulation has a thin-lens spacing about equal
to the focal length, a front doublet with twice the focal length of the
system, and a rear doublet with a focal length equal to that of the sys-
tem. Thus, the (thin-lens) back focus is about half the focal length, and
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Figure 13.23 The Petzval portrait lens.

Figure 13.24 The Petzval projection lens (U.S. Patent
1,843,519-1932); focal length, 100.



the front vertex-to-focal plane distance is about 1.5 times the focal
length. If the airspace is appreciably shortened, it may be necessary to
break contact or increase the index break at the rear doublet to main-
tain the overcorrected astigmatism. Note that the Petzval projection
lens as shown in Fig. 13.24 is basically the same design form as that
of a 10�, NA 0.25 microscope objective. The Petzval projection lens
construction inherently has low spherochromatism, low secondary
spectrum, and a relatively small zonal spherical aberration.

The inward-curving Petzval surface can be corrected by the use of a
negative “field flattener” element near the focal plane, Fig. 13.25. In
this location the power contribution (y�) of the element is low, but the
Petzval field is nicely flattened, and a lens of beautiful definition over
a small field can be obtained. The drawback to this is the location of
the element near the image plane, where dust and dirt can become
quite noticeable. Note that the field flattener is made of flint glass,
which helps the correction of the chromatic aberration.
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Figure 13.25 Petzval projection lens with field flattener (U.S.
Patent 2,076,190-1937); focal length, 100.



The glasses used in the Petzval lens are usually an ordinary crown
and common dense flint. Occasionally higher-index glass is used and
one or both doublets are of the broken contact type.

An interesting variation on the field-flattener Petzval is shown in
Fig. 13.26, in which the rear negative element does double duty, serv-
ing both as the rear flint and as the field flattener as well. The broken
contact in the front doublet is necessary to correct the aberrations.
This lens has a tendency toward increased zonal spherical as well as
fifth-order coma of the y4h type, which is introduced by the airspaced
front doublet. This aberration is frequently encountered in other
design types as well, when a strong negative “air lens” is used in this
manner to correct spherical aberration. The glasses used in this lens
are dense barium crowns (SK4) and dense flints (SF1).

The already small spherical zonal of the Petzval lens can be reduced
still further by splitting the rear doublet into two doublets as indicat-
ed in Fig. 13.27 or by the introduction of a meniscus element into the
central airspace, Fig. 13.28. One Petzval modification achieved a speed
of f/1.0 (with an almost spherical image surface) by splitting off a siz-
able part of the power of each crown element into separate plano-
convex elements. Other modifications have made use of strongly
meniscus front correctors to reduce the spherical zonal, or of thick rear
concentric meniscus elements to improve the field. Two recent designs
which are used as 2-in f/1.4 projection lenses for 16-mm motion pic-
tures are shown in Fig. 13.29. Additional variations on the Petzval
theme are shown in Figs. 14.20, 14.21, 14.22, and 14.23.

Telephoto lenses. Telephoto lenses are arbitrarily defined as lenses
whose length from front vertex to film plane is less than the focal
length. The telephoto ratio is the vertex length divided by the focal
length; a lens with a ratio of one or less is considered a telephoto lens.
This is achieved by a positive front component separated from a 
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Figure 13.26 f/1.6 Petzval lens with
field-flattening effect achieved by
large airspace between rear crown
and flint.

Figure 13.27 f/1.3 Petzval lens
with two rear doublets to reduce
spherical zonal. (U.S. Patent
2,158,202-1939).



negative rear component, as indicated in Fig. 13.30. Several forms of
telephoto lenses are also shown; distortion correction is usually
achieved by splitting the rear component. A common difficulty of the
telephoto and reverse telephoto lenses is a strong inclination toward
an overcorrected Petzval sum and a backward-curving field when
extreme ratios are obtained. Figure 14.13 shows a typical telephoto
lens design.

Reverse telephoto (retrofocus) lenses. By reversing the basic power
arrangement of the telephoto, a back focal length which is longer
than the effective focal length may be achieved. This (Fig. 13.31) is
a useful form when prisms or mirrors are necessary between the
lens and the image plane; it also allows the use of a short-focal-
length projection lens with a condenser designed for longer lenses,
since the pupil position is well away from the image plane. The con-
struction was originally a strong negative achromat in front, com-
bined with a modification of a standard objective. Biotars, triplets,
and Petzvals have all been used for the rear member. It is usually
necessary to split the negative achromat and bend it concave to the
rear member to achieve good correction. In extreme forms (“sky-
lenses” or “fish-eye” lenses) coverage can exceed ±90° with a very
strongly meniscus negative front element. Obviously in order to
image 180° or more on a finite-sized flat film, a large amount of dis-
tortion is unavoidable.

The retrofocus lens has found wide use with the popularity of the
single-lens reflex 35-mm camera, which requires a long back focus to
clear the viewfinder mirror as it swings up out of the way when the
exposure is made. All of the short-focus, wide-angle SLR lenses are of
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Figure 13.28 Field-flattener
Petzval lens with front crown
split into two elements to reduce
spherical zonal. (U.S. Patent
2,541,484-1951).

Figure 13.29 High-performance 2-in, f/1. 4, 16-mm motion picture projection
lenses. (Left is U.S. Patent 2,989,895-1961. Right is U.S. Patent 3,255,664-
1966).



this type. The retrofocus has evolved into a very powerful design form
in its own right and can no longer be regarded as a standard camera
lens with a negative lens out in front. After all, since the front nega-
tive component more than corrects the Petzval curvature, it makes lit-
tle sense to overdo the correction with an already field-flattened
standard design type. Figures 14.11 and 14.12 show a retrofocus and
a “fish-eye” lens, respectively.
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Figure 13.30 Telephoto lenses. A focal length
which is greater than the physical length of
the lens is achieved by a positive front mem-
ber widely separated from a negative rear
member.

Figure 13.31 The reverse telephoto is characterized by a long back
focus which is useful for short-focal-length lenses. In extreme forms
(right-hand sketch) the coverage can be made to exceed 180°.



If one examines the ray path in the right-hand sketch of Fig. 13.31,
it is apparent that the negative element is reducing the angular cov-
erage required of the positive element. This idea is the basis of many
wide-angle camera lenses; this type consists of a collection of positive
components surrounded by meniscus negative elements. The Angulon
and several other designs are of this type. Figures 14.37 and 14.38
show examples of this type of wide-angle lens.

Afocal attachments. These usually take the form of Galilean or
reversed-Galilean telescopes as indicated in Fig. 13.32. The focal
length of the “prime” lens is multiplied by the magnification of the
telescopic attachment. The field of view limits the power of the tele-
photo types to about 1.5�, but the wide-angle type of attachment is
useful to about 0.5�. Such systems are, of course, designed to use an
external stop (that of the prime lens) and frequently require quite a bit
of “stopping-down” to achieve satisfactory imagery, especially in the
simpler constructions.

An afocal attachment can be added to almost any optical system in
order to change its focal length or field or magnification. The idea is
obviously most applicable where the object or image is at a distance so
that the afocal is working in collimated light. For noncollimated appli-
cations a Bravais system (see Sec. 9.9) can serve the same function.

13.4 Condenser Systems

The condenser in a projection system is quite analogous to the field
lens in a telescope or radiometer. The function of the condenser is illus-
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Figure 13.32 The focal length of a prime lens can be modified by the use of an
afocal attachment, which is basically a Galilean telescope. The upper sketch
shows a “telephoto” attachment which increases the focal length. The lower
system is a “wide-angle” which reduces the focal length.



trated in Fig. 13.33. The upper sketch shows a projection system with-
out a condenser. It is apparent that for the axial object point A, only
about half the lens area can be used, for point B only an even smaller
fraction of the lens is utilized, and that no light from the lamp passing
through point C can pass through the projection lens. The result is
that the illumination at the projected image is not as high as it might
be and drops off rapidly away from the axis. This can be alleviated
somewhat by moving the lamp closer to the film, and, in a very few
cases, this solution is satisfactory, if inefficient. However, the filament
is usually not uniform enough to allow it to be projected directly with-
out producing objectionable nonuniformity of illumination at the
image.

The “Koehler” projection condenser shown in the lower sketch of Fig.
13.33 images the lamp filament directly into the aperture of the pro-
jection lens. If the image size is equal to (or greater than) the lens
aperture size, the illumination is optimized, and if the condenser has
a sufficient diameter, the illumination over the full image field is as
uniform as possible. The requirements for an ideal condenser may be
expressed as follows: The image of the filament must completely fill
the projection lens aperture through a small pinhole placed anywhere
in the field (i.e., at the film plane). The photometric aspects of con-
densers are discussed in Sec. 8.10.
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Figure 13.33 The projection condenser produces an image of
the source in the pupil of the projection lens. Note that the
minimum condenser diameter for optimum illumination at
the image of point C is determined by a line through C and
the opposite rim of the pupil.



The chief aberrations of concern in condenser systems are usually
spherical and chromatic aberrations; coma, field curvature, astigma-
tism, and distortion are of secondary importance in ordinary systems.
Figure 13.34 is an exaggerated sketch of a condenser afflicted with
spherical aberration. Note that the filament image formed by the mar-
ginal zone of the condenser completely misses the projection lens aper-
ture, resulting in a marked falloff in illumination at the edge of the
field. This situation could be alleviated by reducing the condenser pow-
er so that the marginal ray focus was at the lens; however, in difficult
cases this can result in a dark zonal ring in the field because at least
some of the zonal rays will then miss the aperture. The effects of chro-
matic aberration are similar, except that one end of the spectrum (red
or blue) may miss the aperture and cause an unevenly colored field of
view, especially noticeable at the field boundary.

Except in unusual cases (e.g., some microscope condensers) chro-
matic effects can be held to a tolerable level without achromatizing.
Spherical aberration is controlled by splitting the condenser into two
or three elements of approximately equal power and bending each ele-
ment toward the “minimum spherical” shape, as indicated in Fig.
13.35a and b. An aspheric surface can be molded on one of the ele-
ments to reduce the spherical aberration, as in Fig. 13.34c. The
aspheric is often a simple paraboloid, and a molded surface can be suf-
ficiently precise to meet the requirements of a condenser system.

When the light source is uniformly bright, it can be imaged directly
on the film gate. In arc-lamp motion picture projectors, an ellipsoidal
mirror is used for this purpose, as shown in Fig. 13.35d. Note that for
full illumination the mirror must be large enough to accept the ray
from the bottom of the projection lens aperture through the top of the
film gate, just as in the Koehler condenser. The ellipsoidal mirror is
used since it has no spherical aberration when the arc is at one focus
of the ellipse and the image (film gate) is at the other. Note that an
ellipsoid does have a substantial coma, however, and thus off-axis
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Figure 13.34 Spherical aberration in a condenser can
cause the rays through the margin of the condenser to
completely miss the aperture of the projection lens.



imagery through the margin of the mirror may depart considerably
from that predicted by first-order optics.

Some projection lamps incorporate a reflector inside the glass bulb
which functions in the same manner as the ellipsoidal mirror of Fig.
13.35d. This allows the system to push the limits on the smallness of
the source (as described in Sec. 8.10) and makes for efficient usage of
a small, low-wattage lamp filament. The mirrors in this type of pro-
jection lamp are often facetted; this allows some control over the mag-
nification produced by each zone of the reflector, and also allows the
direction in which the light is reflected to be adjusted in order to pro-
vide the most desirable distribution in the film gate.

Another construction uses a small lamp integrally fabricated with a
molded, faceted, and much larger reflector. The lamp filament is locat-
ed close to the focal point of the reflector, and the condenser images the
entire reflector in the projection lens aperture in what is effectively a
Koehler configuration, treating the entire reflector as the source.

Most condensing systems can be significantly improved by the addi-
tion of a spherical reflector behind the light source, as indicated in Fig.
13.35a. If the source is at the center of curvature, the mirror images
the source back on itself, effectively increasing its average brightness.
With a lamp filament of relatively open construction, such as a V
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Figure 13.35 Condensing systems. (a) Two-element design with
reflector concentric to source. (b) Three elements, shaped to mini-
mize spherical. (c) Aspheric surfaces can be used to reduce spherical.
(d) The crater of a carbon arc can be imaged directly at the film gate
by an ellipsoidal mirror.



shape, or two parallel coils, the increase in illumination may approach
the reflectivity of the reflector, i.e., 80 to 90 percent. The gain is much
less in a tightly packed source, but even a biplane filament will gain 5
or 10 percent from a properly aligned reflector.

It should be noted that if the projection lens aperture is only par-
tially filled by the filament image, the diffraction effects will differ
from those associated with a fully illuminated aperture. For example,
if only the center of the aperture is illuminated, this “semicoherent
illumination” causes the MTF at low frequencies to be increased, and
the MTF at high frequencies to be reduced. If a two-coil filament is
imaged with the coil images at the extreme edges of the aperture and
the center unilluminated, not only is the MTF balance between high
and low frequencies changed, but the imagery in one meridian (i.e.,
line orientation) is quite different from that in the other, often giving
the impression of an astigmatic image.

13.5 Reflecting Systems

The increasing use of optical systems in the nonvisual regions of the
spectrum, i.e., the ultraviolet and infrared regions, has resulted in a
corresponding increase in the use of reflecting optics. This is due pri-
marily to the difficulty in procuring completely satisfactory refractive
materials for these regions, and secondarily, to the fact that many of
the applications permit the use of relatively unsophisticated mirror
systems.

The material difficulty is of two kinds. Many applications require
the use of a broad spectral band, and a refractive material must trans-
mit well over the full band to be of value. Secondly, chromatic aberra-
tion can be difficult to correct over a wide spectral band, and the
residual secondary spectrum is sometimes intolerable. A review of
Chap. 7 will demonstrate quite clearly the advantages of a reflector in
this regard; an ordinary aluminized mirror actually has much better
reflectance in the infrared than in the visible and (with special atten-
tion) aluminum mirrors suitable for the ultraviolet can be fabricated.
Pure reflecting systems are, of course, completely free of chromatic
aberration over any desired bandwidth.

The spherical mirror. The simplest reflecting objective is the spherical
mirror. For distant objects the spherical mirror has undercorrected
spherical aberration, but the aberration is only one-eighth of that of an
equivalent glass lens at “minimum bending.” The sphere is an espe-
cially interesting system when the aperture stop is located at the cen-
ter of curvature, as shown in Fig. 13.36, because the system is then
monocentric, and any line through the center of the stop may be 
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considered to be the optical axis. The image quality is thus practically
uniform for any angle of obliquity and the only aberration present is
spherical aberration. Coma and astigmatism are zero, and the image
surface is a sphere of radius approximately equal to the focal length,
centered about the center of curvature. We can approximate the spher-
ical aberration by use of the third-order surface contribution equa-
tions. Setting n � �n′ � 1.0 in Eq. 10.7g, we find that

SC � �SC � y2� (13.12)

where y is the semiaperture, R is the radius, and m is the magnifica-
tion. The first expression applies for an infinite object distance, and
the bracketed expression applies to finite conjugates. Using Eq. 11.21
to determine the minimum diameter of the blur spot B, we find that

B � �B � � (13.13)

This expression can be converted into the angular blur (in radians) by
dividing by the image distance l′ (or focal length) to get

� � �� � � (13.14)

By substituting f � R/2 and (f/#) � f/2y � R/4y � relative aperture or
NA � 2y/R, we obtain the following convenient expression for the
angular blur size of a spherical mirror as a function of its speed (for
infinite object distance)
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Figure 13.36 A spherical reflec-
tor with the stop at its center of
curvature forms its image on a
concentric spherical focal sur-
face. The image is free of coma
and astigmatism when the stop
is at this position.



Although this is exact only for the third-order spherical, the expres-
sion is quite reliable up to speeds of f/2. At f/1 the exact ray-traced val-
ue of � is 0.0091, at f/0.75 it is about 0.024, and at f/0.5 it is about 0.13
radians.

When the stop is not at the center of curvature, coma and astigma-
tism are present, and (for an infinite object distance) the third-order
contributions are

CC* � � (13.16)

AC* � (13.17)

PC � � (13.18)

where up is the half-field angle and lp is the mirror-to-stop distance.
Note that when lp is equal to R, CC* (the sagittal coma) and AC* (one-
half the separation of the S and T fields) are zero. For the case of the
stop located at the mirror, we find the minimum angular blur sizes to
be
Comas:

� � radians (13.19)

Compromise focus astigmatism:

� � radians (13.20)

Equations 13.15, 13.19, and 13.20 provide a very convenient way of
estimating the image size for a spherical mirror when combined with
the knowledge that (1) coma and astigmatism are zero with the stop at
the center of curvature and (2) coma varies linearly (per Eq. 13.16) and
astigmatism varies quadratically (per Eq. 13.17) with the distance of
the stop from the center of curvature. The sum of the spherical, coma,
and astigmatism blur angles gives a fair estimate of the effective size
of a point image for a spherical mirror.

The paraboloidal reflector. Reflecting surfaces generated by rotation of
the conic sections (circle, parabola, hyperbola, and ellipse) share two
valuable optical properties. First, a point object located at one focus is
imaged at the other focus without spherical aberration. The paraboloid
of revolution, Fig. 13.37, described by the equation
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x � (13.21)

has one focus at f and the other at infinity, and is thus capable of form-
ing perfect (diffraction limited) images of distant axial objects. The
second characteristic of a conicoid is that if the aperture stop is locat-
ed at the plane of a focus, as for example in Fig. 13.37a, then the image
is free of astigmatism.

However, the paraboloid is not completely free of aberrations; it has
both coma and astigmatism. Since it has no spherical aberration, the
position of the stop does not change the amount of coma, which is giv-
en by Eq. 13.19. The amount of astigmatism is modified by the stop
position. With the stop at the mirror the astigmatism is given by Eq.
13.20; when the stop is at the focal plane, the astigmatism is zero and
the image is located on an approximately spherical surface of radius f,
as shown in Fig. 13.37a.

The ellipsoid and hyperboloid. The imaging properties of these conic
sections are made use of in the Gregorian and Cassegrain telescopic
systems, as indicated in Figs. 13.38 and 13.39, respectively.

The primary mirror in each of these is a paraboloid which produces
an aberration-free axial image at its focus. The secondary mirror is
located so that its first focus coincides with the focus of the paraboloid.

y2

�
4f
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Figure 13.37 (a) A parabolic
reflector is free of astigmatism
when the stop is at the focus. (b)
The Herschel mount for a parab-
oloid uses an off-axis aperture to
keep the focus out of the enter-
ing beam. (c) The newtonian
mount utilizes a 45° plano
reflector to direct the focus to an
accessible point outside the
main tube of the telescope.



Thus the final image is located at the second focus of the secondary
mirror and is completely free of spherical aberration. The paraboloid,
ellipsoid, and hyperboloid all suffer from coma (compare the magnifi-
cation produced by the dotted versus the solid lines in Fig. 13.38) and
astigmatism, so that the image is aberration-free only exactly on the
axis.

It should be apparent that either the Gregorian or Cassegrain objec-
tive systems could be made up with almost any arbitrary (within rea-
son) surface of rotation for the primary mirror; some surface then could
be found for the secondary mirror which would produce a spherical-free
image. This is, in effect, an extra degree of freedom which can be used
by the designer to improve the off-axis imagery of these systems.
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Figure 13.38 Upper: A point
object at one focus of an ellipti-
cal reflector is imaged at the
other focus without spherical
aberration. Lower: The classical
Gregorian telescope uses a para-
bolic primary mirror and an
elliptical secondary so that the
image is free of spherical.

Figure 13.39 Upper: A ray direct-
ed toward one focus of a hyper-
bola is reflected through the
other focus. Lower: The classical
Cassegrain objective uses a par-
abolic primary mirror with a
hyperboloid secondary. When
the primary image is at the
focus of the secondary mirror,
the final image has no spherical
aberration. If the osculating
radii of the surfaces are equal,
the Petzval field is flat.



The Ritchey-Chretien objective uses this extra degree of freedom to
correct both spherical and coma simultaneously in the Cassegrain con-
figuration. Both mirrors are hyperboloids. The same idea can be
applied to the Gregorian or any other two-mirror configuration.

The third-order aberration surface contribution equations (Eqs.
10.7) can be used to evaluate the aberrations of a system of two mir-
rors. The following equations apply to any two-mirror system, regard-
less of configuration. The curvatures of the primary and secondary
mirrors are given by

C1 �

C2 �

where F is the effective focal length of the combination, B is the back
focus (i.e., the distance from mirror #2 to the focus), and D is the spac-
ing between mirrors (the sign of D is here taken as positive). Note that
any configuration can be obtained by suitably choosing F, B, and D.
The Cassegrain has a positive focal length, the Gregorian a negative
one. Both have a focal length which is long compared to D. The
Schwarzschild (see Fig. 13.9) configuration results if B is chosen long
compared with D.

If we assume an object at infinity and place the stop at the primary
mirror, the third-order aberration sums are given by

∑TSC � 

∑CC �

∑TAC �

∑TPC �

where Y � the semiaperture of the system
H � the image height
B � distance from mirror #2 to image (i.e., the back focal

length)

H 2Y [DF � (B � F)2]
���

2BDF2

H 2Y [4BF (B � F) � (F � D � B) (D � F � B)2 � 64B3D3K2]��������
8BDF3

HY2 [2F (B�F)2 � (F�D�B) (F � D�B) (D�F�B) �64B3D3K2]��������
8D2F3

Y3 [F (B�F)3 � 64D3F4K1 � B (F�D�B) (F � D�B)2 � 64B4D3K2]��������
8D3F3

(B � D � F)
��

2DB

(B � F)
�

2DF
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F � system focal length
D � spacing (use positive sign)

∑TSC � transverse third-order spherical aberration sum
∑CC � third-order sagittal coma sum

∑TAC � transverse third-order astigmatism sum
∑TPC � transverse Petzval curvature sum

and where K1 and K2 are the equivalent fourth-order deformation coef-
ficients for the primary and secondary mirrors. For a conic section, K
is equal to the conic constant " (kappa) divided by 8 times the cube of
the surface radius. Thus K � "/8R3 and " � 8KR3

We can readily solve for the standard design forms. If both mirrors
are independently corrected for spherical aberration, we get the clas-
sical Cassegrain or Gregorian, and

K1 � 

K2 �

∑TSC � 0.0

∑CC �

∑TAC �

Note that the coma is a function of only the field (H) and the NA; B and
D do not enter. All Cassegrains and Gregorians have the same third-
order coma.

For a Ritchey-Chretien, we can solve for K1 and K2 to get both third-
order spherical and coma corrected, and

K1 �

K2 �

∑TSC � 0.0

∑CC � 0.0

∑TAC �
H2Y (D � 2F)
��

4BF2

[2F (B � F)2 � (F � D � B) (F � D�B) (D � F � B) ] 
�������

64B3D3

[2BD2 � (B � F)3]
��

64D3F3

H 2Y (D � F)
��

2BF 2

HY 2

�
4F 2

(F � D � B) (F � D � B)2

����
64B3D3

(F � B)3

�
64D3F 3
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A Dall-Kirkham system has a spherical secondary, and all of the cor-
rection is accomplished by the aspheric primary. Thus

K1 �

K2 � 0.0

∑TSC � 0.0

∑CC �

∑TAC �

A sort of inverse Dall-Kirkham has a spherical primary and an
aspheric secondary:

K1 � 0.0

K2 �

∑TSC � 0.0

∑CC �

∑TAC �

These expressions, as mentioned above, are perfectly general, and
apply to any and all two-mirror systems. They are of course limited to
the third order, but are surprisingly accurate up to a speed of f/2.5 or
f/3. One can use these results as starting forms for the development of
faster or more complex designs, incorporating an aspheric corrector
plate or a third mirror to achieve additional correction of, for example,
astigmatism. The results of these expressions make excellent starting
designs for higher-speed systems.

Note that the conics may appear to violate the principles of image
illumination laid down in Chap. 8. For example, a paraboloid can read-
ily be constructed with a diameter more than twice its focal length; a
paraboloid with a speed of say f/0.25 is quite feasible and will indeed
be free of spherical aberration on the axis, whereas in preceding 

H2Y [ (F � B)3 � 4BD (D � F)]
����

8B2DF2

HY 2 [2BD2 � (B � F)3]
���

8BD2F 2

[F (B � F)3 � B (F � D � B) (F � D � B)2]
������

64B4D3

H 2Y [4BF (B � F) � (F � D � B) (D � F � B)2]
������

8DBF 3

HY 2 [2F (B�F)2 � (F�D�B) (F � D�B) (D�F�B)]
�������

8D2F 3

[F (F � B)3 � B (F � D � B) (F � D � B)2]
������

64D3F4
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chapters, we may have led the reader to believe that a speed of f/0.5
was the largest aperture attainable.

This apparent paradox can be resolved by an examination of Fig.
13.40 which shows an f/0.25 parabola. Note that the focal length is
equal to f only for the axial zone and that for marginal zones the focal
length is much larger; for marginal zones the effective focal length of
a parabola is given by

F � f � x � f � (13.22)

The parabola is thus far from an aplanatic (spherical- and coma-free)
system. For an f/0.25 paraboloid the marginal zone focal length is
twice that of the paraxial zone and the magnification is correspond-
ingly larger. Thus, if the object has a finite size, the image formed by
the marginal zones of this mirror will be twice as large as those from
the axial zone; this is, of course, nothing but ordinary coma (the “vari-
ation of magnification with aperture”). The parabola is thus aberra-
tion-free only exactly on the axis.

The apparent contradiction of our image illumination principles is
thus resolved since we had assumed aplanatic systems in their deriva-
tions. From another viewpoint, we can remember that although the
parabola forms a perfect image of an infinitesimal (geometrical) point,
such a point (being infinitesimal) cannot emit a real amount of ener-
gy; the moment one increases the object size to any real dimension, the
parabola has a real field, the image becomes comatic, and the energy
in the image is spread out over a finite blur spot. This reduces the
image illumination to that indicated as the maximum in Chap. 8.

The Cassegrain objective system is used (usually in a modified form)
in a great variety of applications because of its compactness and the

y2

�
4f
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Figure 13.40 Illustrating the
extreme variation of focal length
with ray height in an f/0.25 par-
abolic reflector.



fact that the second reflection places the image behind the primary
mirror where it is readily accessible. It suffers from a very serious
drawback when an appreciable field of view is required, in that an
extreme amount of baffling is necessary to prevent stray radiation
from flooding the image area. Figure 13.41 indicates this difficulty and
the type of baffles frequently used to overcome this problem. An exte-
rior “sunshade,” which is an extension of the main exterior tube of the
scope, is frequently used in addition to the internal baffles.

Because of their uniaxial character, aspheric surfaces are much
more difficult to fabricate than ordinary spherical surfaces. A strong
paraboloid may cost an order of magnitude more than the equivalent
sphere; ellipsoids and hyperboloids are a bit more difficult, and non-
conic aspherics are more difficult still. Thus one might well think twice
(or three times) before specifying an aspheric. Often a spherical sys-
tem can be found which will do nearly as well at a fraction of the cost.
This is also true in refracting systems of moderate size where several
ordinary spherical elements can be purchased for the cost of a single
aspheric. For very large one-of-a-kind systems, however, aspherics are
frequently a sound choice. This is because the large systems (e.g.,
astronomical objectives) are, in the final analysis, handmade, and the
aspheric surface adds only a little to the optician’s task.

Computer-controlled single-point diamond machining has become a
practical technique for fabricating aspheric surfaces. While this is
especially true for infrared optics, aspheric surfaces which owe their
feasibility to diamond turning are showing up in many commercial
applications such as high-level photographic optics. Extremely stable
and precise machine tools (e.g., lathes, mills) can produce surfaces
with turning marks which are small enough to allow their use in high-
quality optical systems. A limitation on diamond turning is that there
is only a small number of materials which can be diamond turned.
Included are germanium, silicon, aluminum, copper, nickel, zinc sul-
fide, selenide, and plastics. Note that glass and ferrous metals are not
included in this list. However, glass molding techniques have reached
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Figure 13.41 Complex conical
baffles are necessary in a
Cassegrain objective to prevent
stray radiation from flooding the
image plane.



a quality level that permits the molding of aspheric surfaces which are
usable in diffraction-limited systems. For example, both molded glass
and plastic aspheric lenses are made for laser disk objectives. The pre-
cision molds for these processes are made on computer-controlled
equipment, and in some cases they are also diamond turned.

Conic section through the origin. Where r is the radius (at the axis) and
c is the curvature (c � 1/r).

y2 � 2rx � px2 � 0

x � �

x � � � � � � . . .

Ellipse p � 1 conic constant kappa � p � 1
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Hyperbola p � 0
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Distance between conic and a circle of the same vertex radius r (i.e.,
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sin � �

Radius of curvature:

Meridional: Rt � �

Sagittal (distance to axis along the surface normal):

Rs � [y2 � (r �  px)2]1/2

The Schmidt system. The Schmidt objective (Fig. 13.42) can be viewed
as an attempt to combine the wide uniform image field of the stop-at-
the-center sphere with the “perfect” imagery of the paraboloid. In the
Schmidt, the reflector is a sphere and the spherical aberration is cor-
rected by a thin refracting aspheric plate at the center of curvature.
Thus the concentric character of the sphere is preserved in great mea-
sure, while the spherical aberration is completely eliminated (at least
for one wavelength).

The aberrations remaining are chromatic variation of spherical
aberration and certain higher-order forms of astigmatism or oblique
spherical which result from the fact that the off-axis ray bundles do
not strike the corrector at the same angle as do the on-axis bundles.
The action of a given zone of the corrector is analogous to that of a thin
refracting prism. For the on-axis bundle, the prism is near minimum
deviation; as the angle of incidence changes, the deviation of the
“prism” is increased, introducing overcorrected spherical. Since the
action is different in the tangential plane than in the sagittal plane,
astigmatism results. This combination is oblique spherical aberration.
The meridional angular blur of a Schmidt system is well approximat-
ed by the expression

[y2 � (r � px)2]3/2

��
r2

Rs
3

�
r2

�y
��
[y2 � (r � px)2]1/2
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Figure 13.42 The Schmidt sys-
tem consists of a spherical
reflector with an aspheric cor-
rector plate at its center of cur-
vature. The aspheric surface in
the f/1 system shown here is
greatly exaggerated.



� � radians (13.23)

There are obviously an infinite number of aspheric surfaces which
may be used on the corrector plate. If the focus is maintained at the
paraxial focus of the mirror, the paraxial power of the corrector is zero
and it takes the form of a weak concave surface. The best forms have
the shape indicated in Fig. 13.42, with a convex paraxial region and
the minimum thickness at the 0.866 or 0.707 zone, depending on
whether it is desired to minimize spherochromatic aberration or to
minimize the material to be ground away in fabrication. The perfor-
mance of the Schmidt can be improved slightly by (1) incompletely cor-
recting the axial spherical to compensate for the off-axis overcorrection,
(2) “bending” the corrector slightly, (3) reducing the spacing, (4) using
a slightly aspheric primary to reduce the load on, and thus the over-
correction introduced by, the corrector. Further improvements have
been made by using more than one corrector and by using an achrom-
atized corrector.

A near-optimal corrector plate has a surface shape given by the
equation

z � 0.5Cy2 � Ky4 � Ly6

where

C �

K �

L �

and f is the focal length, f/# is the speed or f-number, and n is the index
of the corrector plate.

The aspheric corrector of the Schmidt is usually easier to fabricate
than is the aspheric surface of the paraboloid reflector. This is because
the index difference across the glass corrector surface is about 0.5 com-
pared to the effective index difference of 2.0 at the reflecting surface of
the paraboloid, making it only one-fourth as sensitive to fabrication
errors.

An aspheric corrector plate of this type can be added to most optical
systems. One must remember that an aspheric surface placed at the
aperture stop (as in the Schmidt system) will affect only the spherical
aberration and that the aspheric must be placed well away from the

1
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stop if it is to be used to correct coma or astigmatism. An aspheric plate
can be added to any of the two-mirror systems described in previous
sections; if both mirrors are aspheric, the addition of the corrector
plate provides enough degrees of freedom to correct spherical, coma,
and astigmatism. Corrector plates have been used in the entrance
beam or in the image space. An example is the “Schmidt Cassegrain,”
where both mirrors of the Cassegrain configuration are simple
spheres. The aspheric corrector plate is the front window of the system
and is often used to support the secondary mirror. This is an econom-
ical and commercially successful system.

The Mangin mirror. The Mangin mirror is perhaps the simplest of the
catadioptric (i.e., combined reflecting and refracting) systems. It con-
sists of a second-surface spherical mirror with the power of the first
surface chosen to correct the spherical aberration of the reflecting sur-
face. Figure 13.43 shows a Mangin mirror. The design of a Mangin is
straightforward. One radius is chosen arbitrarily (a value about 1.6
times the desired focal length is suitable for the reflector surface) and
the other radius is varied systematically until the spherical aberration
is corrected. The correction is exact for only one zone, however, and an
undercorrected zonal residual remains. The size of the angular blur
spot resulting from the zonal spherical can be approximated (for aper-
tures smaller than about f/1.0) by the empirical expression

� � radians (13.24)

Note that this is the minimum-diameter blur and that the “hard-core”
blur diameter is smaller, as discussed in Chap. 11. At larger apertures,
the angular blur predicted by Eq. 13.24 is too small; for example, at
f/0.7 the blur is about 0.002 radians, almost twice as large as that pre-
dicted by Eq. 13.24.

Since the Mangin is roughly equivalent to an achromatic reflector
plus a pair of simple negative lenses, the system has a very large over-
corrected chromatic aberration. This can be corrected by making an
achromatic doublet out of the refracting element. For the simple
Mangin, the chromatic angular blur is approximated by

� � radians (13.25)

where V is the Abbe V-value of the material used. Note that this is only
about one-third of the chromatic of a simple lens.

The coma blur of the Mangin primary mirror is approximately one-
half of that given by Eq. 13.19. Since the spherical aberration is cor-
rected, little change in the coma results from a shift of the stop position.

1
�
6V (f/#)
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�
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The Mangin principle may be applied to the secondary mirror of a
system as well as to the primary. The right-hand sketch of Fig. 13.43
shows a Cassegrain type of system in which the secondary is an
achromatic Mangin mirror. Such a system is relatively economical and
light in weight, since all surfaces are spheres and only the small sec-
ondary needs to be made of high-quality optical material. The power of
a thin second-surface reflecting element is given by

� � 2C1 (n � 1) � 2C2n

The Mangin mirror is often used as an element of a more complex
system. For example, the primary or secondary of a system may be a
Mangin; as such, it serves to correct aberrations without adding sig-
nificantly to the weight of the system and often effectively replaces an
expensive aspheric surface.

The Bouwers (Maksutov) system. The Bouwers (or Maksutov) system
may be considered a logical extension of the Mangin mirror principle
in which the correcting lens is separated from the mirror to allow two
additional degrees of freedom, producing a great improvement in the
image quality of the system.

A popular version of this device is the Bouwers concentric system,
shown in Fig. 13.44. In this system, all surfaces are made concentric to
the aperture stop, which (as we have noted in the case of the simple
spherical mirror) results in a system with uniform image quality over the
entire field of view. This is an exceedingly simple system to design, since
there are only three degrees of freedom, namely, the three curvatures.
One chooses R1 to set the scale of the lens (a value of R1 equal to about
85 percent of the intended focal length is appropriate) and R2 to provide
an appropriate thickness for the corrector, and then determines the val-
ue of R3 for which the marginal spherical is zero. Because of the mono-
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Figure 13.43 In the Mangin mirror (left) the spherical aberration of the sec-
ond surface reflector is corrected by the refracting first surface. In the right-
hand sketch, the spherical is corrected by a Mangin-type secondary. The
dotted lines indicate the manner in which color correction can be achieved. In
a doublet Mangin, glass choice can be used as a design freedom.



centric construction, coma and astigmatism are zero, and the image is
located on a spherical surface which is also concentric to the stop and
whose radius equals the focal length of the system. Thus only a few rays
need be traced to completely determine the correction of the system.

One of the interesting features of this system is that the concentric
corrector element may be inserted anywhere in the system (as long as
it remains concentric) and it will produce exactly the same image cor-
rection. Two equivalent positions for the corrector are shown in Fig.
13.44. A third position is in the convergent beam, between the mirror
and the image.

If we accept the curved focal plane, the only aberrations of the
Bouwers concentric system are residual zonal spherical aberration
and longitudinal (axial) chromatic aberration. In general, as the cor-
rector thickness is increased, the zonal is reduced and the chromatic is
increased.

The concentric system described above is used for most applications
requiring a wide field of view. When the field requirements permit, the
zonal spherical or the chromatic may be reduced by departing from the
concentric mode of construction, although this is, of course, accom-
plished at the expense of the coma and astigmatism correction.

If one of the thick-lens equations (Eq. 2.36 or 2.37) is differentiated
with respect to the index, the result can be set equal to zero and the
equation solved for the shape of an element whose power or image dis-
tance does not vary with a change in index (or a change in wave-
length). This is an achromatic singlet. It takes the shape of a thick
meniscus element, and this can be used as an achromatic corrector,
just as in Fig. 13.44. This is the basis of the Maksutov system.
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Figure 13.44 In the Bouwers concentric catadioptric sys-
tem, all the surfaces are concentric about the aperture.
The “front” and “rear” versions of the corrector are identi-
cal and produce identical correction. The rear system is
more compact, but the front system can be better correct-
ed, since it can utilize a greater corrector thickness with-
out interference with the focal surface. Occasionally,
correctors in both locations are utilized simultaneously.



Another means of effecting chromatic correction is shown in Fig.
13.45a, in which the corrector meniscus is made achromatic. Note that
concentricity is destroyed by this technique, although if the crown and
flint elements are made of materials with the same index but different
V-values (e.g., DBC-2, 617:549, and DF-2, 617:366), the concentricity
can be preserved for the wavelength at which the indices match, and
only the chromatic correction will vary with obliquity.

A very powerful system results if the concentric Bouwers system is
combined with a Schmidt-type aspheric corrector plate, as shown in
Fig. 13.45b. Since the aspheric plate need only correct the small zon-
al residual of the concentric system, its effects are relatively weak
and the variation of effects with obliquity are correspondingly small.
The Baker-Nunn satellite tracking cameras are based on this princi-
ple, although their construction is more elaborate, using double-
meniscus correctors and three (achromatized) aspheric correctors at
the stop.

The basic Bouwers-Maksutov meniscus corrector principle has been
utilized in a multitude of forms. A few of the possible Cassegrain
embodiments of the principle are shown in Fig. 13.46. The reader can
probably devise an equal number in a few minutes. An arrangement
similar to that shown in Fig. 13.46c is frequently used in homing mis-
sile guidance systems. The corrector makes a reasonably aerodynamic
window, or dome, and although the system is not concentric, the pri-
mary and secondary can be gimballed as a unit about the center of cur-
vature of the dome so that the “axial” correction is maintained as the
direction of sight is varied.
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Figure 13.45 (a) An achroma-
tized meniscus corrector. (b) An
aspheric corrector plate at the
stop removes the residual zonal
spherical aberration of the con-
centric system.



There is a tremendous number of variations of the catadioptric prin-
ciple. Refractive correctors in almost every conceivable form have been
combined with mirrors. Positive field lenses have been used to flatten
the overcorrected Petzval surface of the basic concave reflector, coma-
correcting field elements have been used with paraboloids, and multi-
ple nonmeniscus correctors have been used with spheres, to name just
a few of the variations on the device. The basic strength of this gener-
al system is, of course, the relatively small aberration inherent in a
spherical reflector; the corrector’s task is to remove the faults without
losing the virtues.

Two or more closely spaced thin-corrector elements whose total pow-
er is effectively zero can be shaped to correct the aberrations of a
spherical mirror. If the glass is the same for all of the corrector ele-
ments, then the combination will have little or no chromatic, primary
or secondary. Additional examples of catadioptric systems are shown
in Figs. 14.29, 14.30, and 14.31.

13.6 The Rapid Estimation of Blur Sizes for
Simple Optical Systems

It is frequently useful to be able to estimate the size of the aberration
blur produced by an optical system without going to the trouble of
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Figure 13.46 Four of the many possible Cassegrain versions of the
meniscus corrector catadioptric system..



making a raytrace analysis. In preliminary engineering work or the
preparation of technical proposals, where time is limited, the following
material (which is based largely on third-order aberration analysis or
empirical studies) can be of value.

The aberrations are expressed in terms of the angular size � (in
radians) of the blur spot which they produce; � may be converted to B,
the linear diameter of the blur, by multiplying by the system focal
length. In this section the object will be assumed to be at infinity.

Where the blur size for more than one aberration is given, the sum
of all the aberration blurs will yield a conservative (i.e., large) estimate
of the total blur.

Where the blur is due to chromatic aberration, the blur angle given
encompasses the total energy in the image of a point. Occasionally it
is of value to know that 75 to 90 percent of the energy is contained in
a blur one-half as large, and 40 to 60 percent of the energy is contained
in a blur one-quarter as large as that given by the equations. In the
visible, the chromatic blur is usually reduced by a factor of about 40 by
achromatizing the system.

The blurs given for spherical aberration are the minimum-diameter
blur sizes; these values are the most useful for work with detectors.
For visual or photographic work, a “hard-core” focus, as discussed in
Chap. 11, is preferable, and the blurs given here should be modified
accordingly.

Note that with the exception of Eqs. 13.26 and 13.27, all the blurs
are based on geometrical considerations. It is, therefore, wise to eval-
uate Eq. 13.26 or 13.27 first to be certain that the geometrical blurs
are not smaller than the diffraction pattern before basing further
effort on the geometrical results.

More complete discussions of the individual systems may be found
in the preceding section.

Diffraction-limited systems. The diameter of the first dark ring of the
Airy pattern is given by

� � radians (13.26)

B � 2.44	 (f/#) � (13.27)

where 	 is the wavelength, D is the clear aperture of the system, (f/#)
� f/D is the relative aperture, and f is the focal length. The “effective”
diameter of the blur (for modulation transfer purposes) is about one-
half the above.

1.22	
�

NA

2.44	
�

D
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Spherical mirror

Spherical aberration: � � radians (13.28)

Sagittal coma: � � radians (13.29)

Astigmatism: � � radians (13.30)

where lp is the mirror-to-stop distance, R is the mirror radius, (lp � R)
is the center-to-stop distance, and Up is the half-field angle in radians.
The focal plane of a spherical mirror is on a spherical surface concen-
tric to the mirror when the stop is at the center of curvature.

Paraboloidal mirror

Spherical aberration: � � 0 (13.31)

Sagittal coma: � � radians (13.32)

Astigmatism: � � radians (13.33)

where the symbols have been defined above.

Schmidt system

Spherical aberration: � � 0 (13.34)

Higher-order aberrations: � � radians (13.35)

Spherochromatic: � � (13.35a)

Mangin mirror (Stop at the mirror):

Zonal spherical: � � radians (13.36)

Chromatic aberration: � � ) radians (13.37)
1
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Sagittal coma: � � radians (13.38)

Astigmatism: � � radians (13.39)

Simple thin lens. (Minimum spherical shape):

Spherical aberration: � � radians (13.40)

K � 0.0067 for n � 1.5

� 0.027 for n � 2.0

� 0.0129 for n � 3.0

� 0.0103 for n � 3.5

� 0.0087 for n � 4.0

Chromatic aberration: � � radians (13.41)

Sagittal coma: � � radians (13.42)

Astigmatism: � � radians (at compromise focus)
(13.43)

where n is the index of refraction, V is the reciprocal relative disper-
sion, and the stop is at the lens.

Concentric Bouwers. The expressions for monochromatic aberrations
are empirical and are derived from the performance graphs and tables
given by Bouwers and by Lauroesch and Wing (see references).

Rear concentric (solid line in Fig. 13.44). The maximum corrector thick-
ness of this form must be limited to keep the image from falling inside
the corrector. With the thickest possible corrector:
Zonal spherical:

� ≈ radians (13.44)

General concentric

Zonal spherical: � ≈ radians (13.45)
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Chromatic aberration: � ≈ radians (13.46a)

or very approximately: � ≈ 0.6 radians (13.46b)

Corrected concentric

Higher-order aberrations:

� ≈ radians (13.47)

where t is the corrector plate thickness, f is the system focal length, 
n
is the dispersion of the corrector material, n is the index of the correc-
tor, and R1 and R2 are the radii of the corrector. These expressions
apply for corrector index values in the 1.5 to 1.6 range and for relative
apertures to the order of f/1.0 or f/2.0. For speeds faster than f/1.0, the
monochromatic blur angles are larger than above (e.g., about 20 per-
cent larger at f/0.7). The use of a high-index corrector (n � 2) will
reduce the monochromatic blur somewhat at high speeds.

The charts of Figs. 13.47 to 13.54 are designed to give a rapid, albeit
incomplete, estimation of the performance of the systems discussed in
this section.

Figure 13.47 is used by locating the intersection of a wavelength line
with the appropriate diagonal aperture line. The linear blur spot
diameter B may be converted to the angular blur spot diameter � by
locating the abscissa corresponding to the intersection of the B diame-
ter ordinate with the appropriate diagonal focal-length line.

Figures 13.48, 13.49, and 13.51 assume that the aperture stop is in
contact with the lens or mirror. The blur size for the angle-dependent
aberrations is found by locating the intersection of a horizontal field
angle line with the diagonal f-number line.

Figure 13.52 plots the spherical aberration blur as a function of ele-
ment shape and index of refraction. This plot makes the effect of a
change of index quite apparent. As the index is increased, the spheri-
cal aberration is reduced, and the shape of the element which yields
the minimum amount of spherical becomes more and more meniscus.
This illustrates why lens designers use high-index glasses to improve
a lens design. Note that the minimum spherical for an index of 4.0 is
the same as that of a mirror.

Figure 13.53 shows the effect of splitting an element into two or
more elements. For an index of 1.5, splitting a lens in two reduces the
spherical by a factor of about 5; dividing the lens into three parts
reduces it by a factor of about 20. If the lens is split into four parts, the
third-order spherical can be reduced to zero. This effect is widely uti-
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lized to improve the image quality of more complex lenses. See, for
example, Figs. 12.9, 13.20, and 13.21.

A very rough idea of the geometrical modulation transfer factor of
the system can be obtained by using Fig. 13.54. The total angular blur
spot for the system is determined (by summing the individual aberra-
tion blurs) and is then multiplied by the desired spatial frequency in
cycles per radian. The modulation transfer factor may then be read
directly from the figure. Note that this is very approximate and is not
reliable when the total blur is of the same order of magnitude as the
Airy disk (see the discussion in Chap. 11).
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Figure 13.47 Blur spot size chart for diffraction-limited systems. Diameter is
that of the first dark ring of the Airy disk.
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Figure 13.49 Blur spot size charts for Mangin mirrors.

Figure 13.48 Blur spot size charts for spherical reflector. Charts B
and C also apply to a paraboloidal reflector; Fig. 13.47 may be used
for a paraboloid on axis.
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Figure 13.50 Blur spot size chart. Chart A: Schmidt systems.
Charts B, C, and D: Concentric Bouwers systems.

Figure 13.51 Blur spot size charts for a single refracting ele-
ment.
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Exercises

See the note preceding the exercises for Chapter 12.

1 Design a symmetrical eyepiece, using BK7 and SF2 glass, for a 
10 � telescope.

2 Design a separable (Lister) 10�, NA 0.25 microscope objective by deter-
mining the zero spherical form for each doublet. Analyze the field curvature of
the combination.

3 Design a 20� (f � 8 mm) two-mirror reflecting microscope objective and
determine an appropriate combination of aperture and field over which the
aberrations will not exceed the Rayleigh limit.

4 Design a split-front crown triplet (see Fig. 13.21), using SK4 and SF5 glass-
es, for a speed of f/2.8, a focal length of 125 mm, and a total field of 20°, suit-
able for a 35-mm slide projector.

5 For an aperture of f/2 and a half-field of 0.1 radians, determine the relative
angular-blur-spot size of the various systems listed in Section 13.6. Where stop
position is critical, consider (a) the best position, and (b) the most compact
arrangement. Assume a V of 100 for the refracting materials.

6 Design an f/1 Bouwers concentric system. Achromatize the design (choose
a crown and flint with matching indices) and analyze the off-axis chromatic
and chromatic variation of the aberrations.
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Some Forty-Four
More Lens Designs

14.1 Introduction

This chapter consists entirely of the design and performance data for
forty-four additional lenses. These designs were selected from the
nearly 300 lenses detailed in W. J. Smith, Modern Lens Design (MLD)
(New York, McGraw-Hill, 1992). The figures are taken directly from
MLD without change. Figures 14.1 and 14.2 are sample figures which
are annotated to indicate the meaning of certain abbreviations used in
the figures and also to show the scale of the aberration plots, respec-
tively. All the designs are shown at a focal length of 100, regardless of
the focal length at which they are actually apt to be used. The caption
associated with each figure is rather limited. Should a more extensive
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Figure 14.1 Sample lens prescription showing the abbrevia-
tion meanings.



discussion of lens design theory, principles, and techniques be desired,
the reader is referred to MLD itself.

14.2 The Designs

The designs and performance data are shown in Figs. 14.3 to 14.46.
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Figure 14.2 Sample aberration plot showing the scale of each plot.



Figure 14.3 This is an apochromatic triplet, corrected for spherical, chromatic, and
coma. Note that the spherochromatic is not corrected. (One definition of “apochro-
mat” is that the chromatic is corrected for three wavelengths and the spherical aber-
ration is corrected for two wavelengths.)
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Figure 14.4 An airspaced triplet telescope objective. Splitting the crown element
powerfully reduces the zonal spherical, and spacing the flint away from the
crowns works on both the zonal and the spherochromatism, leaving the secondary
spectrum as the dominant axial aberration.
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Figure 14.5 A doublet magnifier. This is an excellent design for a general-purpose
magnifier or for a slide-viewer lens.
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Figure 14.6 A simple, inexpensive eyepiece with a long eye relief and good performance,
often used as a microscope eyepiece.
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Figure 14.7 An example of the symmetrical, or Ploessl, eyepiece using dense barium
crown glass. This excellent general-purpose eyepiece is a very forgiving design in that
almost any two achromats oriented crown to crown make a pretty good eyepiece or mag-
nifier.
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Figure 14.8 A classic Erfle eyepiece, used when one needs to cover a moderately
wide angle. The large eye relief and the flat Petzval field of the Erfle derive from
the concave surface close to the focal plane.
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Figure 14.9 An unusual Cooke triplet with high-index crowns. The designer has used
thick elements to improve this design, which perhaps should disqualify it from the label
“Cooke.”
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Figure 14.10 A low-index, broadband Cooke triplet which uses calcium fluoride and fused
silica to allow coverage of a spectral band extending from the ultraviolet (UV) to the near
infrared (IR). Note the large spherochromatism and reversed secondary spectrum.
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Figure 14.11 A relatively simple reversed telephoto, or retrofocus, which covers a wide
(±37°) field at f/2.8 and has a back focus over 30 percent longer than its focal length.



Figure 14.12 A “fish-eye” lens covers a 180° or larger field of view by taking advan-
tage of the heavy overcorrected spherical aberration of the powerful negative
meniscus front elements, which strongly deviate the principal ray. This spherical
aberration of the pupil causes the entrance pupil to move forward and off the axis
and to tilt at wide angles of view.
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Figure 14.13 A typical telephoto lens with an 80 percent telephoto ratio; this config-
uration would make an excellent 35-mm camera lens at a 200-mm focal length.



Figure 14.14 The classic Dagor combines the front and rear doublets of the Protar
into a triplet. Note the progression of refractive index and the powers of the cement-
ed surfaces. Later versions (see Fig. 13.13) split off the inner crowns, allowing the
use of a higher-index glass for these elements. Note that the latter form has eight
reflecting air glass surfaces vs. four for the Dagor, an important consideration in the
days before low-reflection coatings.
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Figure 14.15 The Dogmar is related to the Dagor and Protar in that it can be considered to
consist of two symmetrical meniscus triplet components, each with a central air lens. As
shown here, the Dogmar makes an excellent enlarger lens, being relatively insensitive to
conjugate change.
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Figure 14.16 A Tessar with a reversed rear doublet. This orientation is said to be better
when a high-index rare earth crown is used in the doublet.
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Figure 14.17 An example of a reversed Tessar with the doublet in front.
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Figure 14.18 The Heliar form has doublets front and rear, gaining the advantage of a
roughly symmetrical construction. Just as the Tessar is better than the Cooke triplet,
the Heliar is better than the Tessar.
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Figure 14.19 An unclassified, good, but rarely encountered form, with a central negative
doublet replacing the flint of the Tessar. Note that the cemented surface of the inner
doublet is a “Merté” surface, as also shown in Fig. 13.19.
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Figure 14.20 A Petzval modification using dense barium crowns, with the split rear
doublet widely spaced so that its flint element acts as a field flattener.
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Figure 14.21 A modification of Fig. 14.20 which splits the positive elements to allow
both improved performance and a significant increase of the speed to f/1.4.
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Figure 14.22 A split front crown in this Petzval lens allows a speed of f/1.25 using ordi-
nary glasses. But notice the extremely short back focal length (which facilitates the good
performance by reducing the element powers compared with those required when a
longer back focus is provided).
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Figure 14.23 The R-Biotar, an extremely high-speed lens of simple construction,
designed as a radiographic camera lens, controls the higher-order aberrations by care-
ful spacing and power distribution.
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Figure 14.24 When the thickness is allowed to vary, the split-front triplet often takes
this form, where the first three elements look a bit like the front member of a double-
Gauss design.
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Figure 14.25 A direct descendant from the split-front triplet design, this design replaces
elements two and three with a triplet component using a low-index glass instead of air
to space elements two and three apart, plus a Tessar-type rear component.
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Figure 14.26 A really high-speed Sonnar.
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Figure 14.27 The meniscus inner crown of the split-front triplet can advantageously be
made a doublet. This is about the simplest of the many modifications that this powerful
basic design form has undergone.
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Figure 14.28 An example of a high-power microscope objective in which the apla-
natic front hyperhemisphere is modified by introducing a concave front surface
which, being near the focus, acts as a field flattener. Note also the use of calcium flu-
oride and FK51 glass to correct the secondary spectrum.
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Figure 14.29 Three singlet correctors, of the same glass, whose power totals zero,
are used to correct the aberrations of the spherical-surfaced Cassegrain configura-
tion without introducing either primary or secondary chromatic aberration (but
not without spherochromatism).
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Figure 14.30 An aspheric meniscus corrector, a second surface primary mirror, the
meniscus corrector as the secondary mirror, and two field corrector lenses in the final
convergent beam all combine in this multifeatured design with excellent color correc-
tion.
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Figure 14.31 A single-material catadioptric, corrected for primary and secondary col-
or, has Mangin mirrors for both primary and secondary reflectors.
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Figure 14.32 This basic six-element double-Gauss uses high-index crowns to reach
a speed of f/1.25.
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Figure 14.33 This f/2.0 35-mm camera objective is the result (and best) of an extensive
design study reported by Mandler at the 1980 International Lens Design Conference.
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Figure 14.34 The split rear crown double Gauss, probably the most effective of the basic
modifications to the double Gauss, allows a speed of f/1.4 in this 35-mm camera lens.
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Figure 14.35 Recent double-Gauss camera lenses have advantageously separated the
cemented front doublet of the split rear crown system. Many of the newer designs follow
this configuration.



Figure 14.36 A very high-speed double Gauss at f/1.1, this split front and split rear crown
design can be improved by using BaSF6 (668-419) glass in the front element to correct
the chromatic.
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Figure 14.37 The strong negative outer meniscus elements in this wide-angle
design have two obvious functions. In what might be regarded as a sort of inside-
out Cooke triplet, the negative elements (in a relatively low axial ray height loca-
tion) flatten the Petzval field. They also serve to lower the slope of the principal
ray at the central positive components, thus reducing the angular field that these
components must cover.
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Figure 14.38 The increased complexity provided by two more elements than Fig.
14.37 allows a total field of 90° for this lens.
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Figure 14.39 This triplet with an aspheric field corrector is typical of the wide-angle,
short, point-and-shoot camera lenses made possible by the new fabrication techniques
for aspherics.



Figure 14.40 This projection TV objective has four elements, each with one aspher-
ic surface. This is one of the benefits of injection-molded plastic elements. Note
that many projection TV objective designs incorporate one high-powered glass ele-
ment in order to achieve thermal focus stability (which is a real problem with plas-
tic optics).
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Figure 14.41 One might regard this as an IR Cooke triplet. The odd (i.e., not typ-
ical of a Cooke triplet) element shapes are the result of the high refractive
indices of the materials used in the IR region.
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Figure 14.42 This four-element all-germanium IR design achieves a remarkable
speed of f/0.55. A design this fast is difficult to get started because the strongly slop-
ing rays tend to miss surfaces or to encounter total internal reflection (TIR). This
makes it difficult to find a starting design where all the rays can be traced through.
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Figure 14.43 This is an IR telescope of the type often used as a “front” for a scanning
system. The “eyepiece,” consisting of two facing meniscus elements, is quite typical
of the breed.



Figure 14.44 This F-theta laser scanning lens is an obvious configuration for the task.
It has an external pupil at the scanning mirror and produces the right amount of dis-
tortion to achieve the required h � F � � relationship between input beam angle and
the image distance from the axis. Since the system is monochromatic, we can use a
low-index crown for the negative elements and a high-index flint for the positive ele-
ments. This improves the Petzval field. The lens is, of course, a hyperchromat.
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Figure 14.45 The ability to mold precision aspheric surfaces in either glass or plas-
tic has been widely used in singlet lenses for laser disk objectives. Note that the rel-
atively large thickness and the second aspheric surface allow reduction of the
undercorrected astigmatism which is always found in thin positive systems.
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Figure 14.46 This is basically a doublet telescope objective for a monochromatic (laser)
system in which a single high-index glass is used and the spherochromatic is well cor-
rected by the airspace, as explained in Chap. 12. The result is a lens which is well cor-
rected for a wide range of (monochromatic) wavelengths and is thus usable with many
different laser wavelengths. (Note that because it is not achromatic, it must be refo-
cused when the wavelength is changed.)
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Optics in Practice

This chapter will briefly survey the factors involved in reducing an
optical system to practice. A short description of the optical manufac-
turing process will be followed by a discussion of the specification and
tolerancing of optics for the shop. The mounting of optical elements
will be considered next, and the chapter will be concluded with a sec-
tion on optical laboratory measurement techniques.

15.1 Optical Manufacture

Materials. The starting point for quantity production of optics is most
frequently a rough molded glass blank or pressing. This is made by
heating a weighed chunk of glass to a plastic state and pressing it to
the desired shape in a metal mold. The blank is made larger than the
finished element to allow for the material which will be removed in
processing; the amount removed must (at a minimum) be sufficient to
clean up the outer layers of the blank which are of low quality and may
contain flaws or the powdery fireclay used in molding. Typically a lens
blank will be about 3-mm thicker than the finished lens and 2-mm
larger in diameter. A prism blank will be large enough to allow
removal of about 2 mm on each surface. These allowances vary with
the size of the piece and are less for a clean blank. When the blank is
of an expensive material, such as silicon or one of the more exotic
glasses, the blanking allowances are held to the absolute minimum to
conserve material.

Although most blanks are single, a cluster form is frequently eco-
nomical for small elements. A cluster may consist of five or ten blanks
connected by a thin web which is ground off to free the individual
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blanks. If molded blanks are unobtainable, either because of the small
quantity involved or the type of material, a rough blank may be pre-
pared by chipping or sawing a suitable shape from stock material.

Rough blanks can be checked fairly satisfactorily for the presence of
strain (which results from poor annealing of the glass) by the use of a
polariscope. An accurate check of the index requires that a plano sur-
face be polished on a sample piece; however, if a batch of blanks is
known to have been made from a single melt or run of glass, only one
or two of the blanks need be checked, because the index within a melt
is quite consistent. Since the final annealing process raises the index,
the presence of strain is frequently accompanied by a low index value.

When the shape of a blank is such that there are large variations in
thickness from center to edge, it is difficult to get a uniform anneal. A
variation of index within the blank may result. This is especially true
for certain of the exotic optical glasses which are difficult to anneal.
Glass in slab form is easier to anneal uniformly and is thus more homo-
geneous; it is often required for especially critical lenses for this reason.

Rough shaping. The preliminary shaping of an element is often
accomplished by using diamond-charged grinding wheels. In the case
of spherical surfaces, the process involved is generating. The blank is
rotated in a vacuum chuck and is ground by a rotating annular dia-
mond wheel whose axis is at an angle to the chuck axis, as indicated
in Fig. 15.1. The geometry of this arrangement is such that a sphere is
generated; the radius is determined by the angle between the two axes
and by the effective diameter of the diamond tool (which will usually
overhang the edge of the lens). The thickness is, of course, governed by
how far the work is advanced into the tool. Flat work can be roughed
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Figure 15.1 Schematic diagram of the generating
process. The annular diamond tool and the glass
blank are both rotated. Since their axes intersect
at an angle (�), the surface of the blank is generat-
ed to a sphere of radius R � D/2 sin �.



out in a similar manner, with the two axes parallel. Rectangular
shapes can be formed by milling, again using diamond tools.

Blocking. It is customary to process optical elements in multiples by
fastening or blocking a suitable number on a common support. There
are two primary reasons for this: The obvious reason is economy, in
that several elements are processed simultaneously; the less apparent
reason is that a better surface results when the processing is averaged
over the larger area represented by a number of pieces.

The elements are fastened to the blocking tool with pitch, although
various compounds of waxes and rosins are also used for special pur-
poses. Pitch has the useful property of adhering tenaciously to almost
anything which is hot and not sticking to cold surfaces. The pitch bond
is readily broken by chilling the pitch to a brittle state and shocking it
with a brisk but light tap. Typically the elements are fastened to the
blocker by pitch buttons which are molded to the back of the elements
(suitably warmed); the buttons are then stuck to the heated blocker, as
indicated in Fig. 15.2. (The surfaces of the elements are maintained in
alignment by placing the buttoned elements into a lay-in tool of the
proper radius and then pressing the heated blocker into contact with
the pitch buttons.)

The cost of processing an element is obviously closely related to the
number of elements which can be blocked on a tool. There is no simple
way to determine this number exactly; however, the following expres-
sions (which are “limiting-case” expressions, modified to fit the actual
values) are accurate to within about one element per tool.
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Figure 15.2 Section of a blocking tool with blanks
fastened in place with buttons of blocking pitch. The
maximum number of lenses that can be blocked on
a tool is determined by the angle B (see Eq. 15.2).



For plano surfaces:

No. per tool � � �
2

� (15.1)

rounded downward to the nearest integer, where Dt is the diameter of
the blocking tool and d is the effective diameter of the piece (and
should include an allowance for clearance between the elements).

For spherical surfaces:

No. per tool � � � � (15.2a)

where R is the surface radius, d is the lens diameter (including a clear-
ance allowance), and SH is the sagittal height of the tool. For a tool
which subtends 180°, SH � R and this reduces to

No. per tool � � � � (15.2b)

rounded downward to the nearest integer, where B is the half-angle
subtended by the lens diameter (plus spacing allowance) from the cen-
ter of curvature of the surface, as indicated in Fig. 15.2.

Where there are only a few lenses per tool, the following tabulation
for 180° tools is convenient and more accurate.

No. per tool Maximum d/Dt Maximum sin B 2B

2 0.500 0.707 90°
3 0.462 0.655 81.79°
4 0.412 0.577 70.53°
5 0.372 0.507 60.89°
6 — 0.500 60°
7 0.332 0.447 53.13°
8 0.301 0.398 46.91°
9 0.276 0.383 45°

10 — 0.369 43.24°
11 0.253 0.358 41.88°
12 0.243 0.346 40.24°

Grinding. The surface of the element is further refined by a series of
grinding operations, performed with loose abrasive in a water slurry
and cast iron grinding tools. If the elements have not been generated,
the grinding process begins with a coarse, fast-cutting emery.
Otherwise, it begins with a medium grade and proceeds to a very fine
grade which imparts a smooth velvety surface to the glass.

The grinding (and polishing) of a spherical surface is accomplished
to a high degree of precision with relatively crude equipment by tak-
ing advantage of a unique property of a spherical surface, namely, that
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a concave sphere and a convex sphere of the same radius will contact
each other intimately regardless of their relative orientations. Thus, if
two mating surfaces which are approximately spherical are contacted
(with abrasive between them) and randomly moved with respect to
each other, the general tendency is for both surfaces to wear away at
their high spots and to approach a true spherical surface as they wear.
(For a detailed analytical treatment of the subject of relative wear in
optical processing, the reader is strongly urged to consult the reference
by Deve, listed at the end of this chapter.)

Usually the convex piece (either blocker or grinding tool) is mount-
ed in a power-driven spindle and the concave piece is placed on top as
shown in Fig. 15.3. The upper tool is constrained only by a ball pin-
and-socket arrangement and is free to rotate as driven by its sliding
contact with the lower piece; it tends to assume the same angular rate
of rotation as the lower piece. The pin is oscillated back and forth so
that the relationship between the two tools is continuously varied. By
adjusting the offset and amplitude of the motion of the pin, the opti-
cian can modify the pattern of wear on the glass and thus effect
minute corrections to the value and uniformity of the radius generat-
ed by the process.
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Figure 15.3 In grinding (or polishing), a semirandom scrubbing action
is set up by the rotation of the lower (convex) tool about its axis and
the back-and-forth oscillation of the upper (concave) tool. Note that
the upper tool is free to rotate about the ball end of the driving pin
and takes on a rotation induced by the lower tool.



Each successively finer grade of emery is used until the grinding pits
left by the preceding operation are ground out.

Polishing. The mechanics of the polishing process are quite analogous
to the grinding process. However, the polishing tool is lined with a lay-
er of pitch and the polishing compound is a slurry of water and rouge
(iron oxide) or cerium oxide. The polishing pitch will cold flow and thus
take on the shape of the work in a very short time.

The polishing process is a peculiar one that is still incompletely
understood. It appears that the surface of the glass is hydrolyzed by
the polishing slurry and the resulting gel layer is scraped away by the
particles of polishing compound embedded in the polishing pitch. This
analysis explains many of the phenomena associated with polishing,
such as scratches and cracks which are “flowed” shut by polishing, but
which later open up when heated or exposed to the atmosphere. But
when one considers that historically, polishing tools have been made
from materials as diverse as felt, lead, taffeta, leather, wood, copper,
and cork, and that polishing compounds other than rouge have been
successfully used, and that many optical materials (e.g., silicon, ger-
manium, aluminum, nickel, and crystals) have a different chemistry
than glass, it would seem that a variety of polishing mechanisms is
quite likely. Some polishing agents are actually etchants of the mater-
ial that they polish; some materials can be polished dry.

Polishing is continued until the surface is free of any grinding pits
or scratches. The accuracy of the radius is checked by the use of a test
plate (or test glass). This is a very precisely made master gage which
has been polished to an exact radius and which is a true sphere to
within a tiny fraction of a wavelength. The test plate is placed in con-
tact with the work, and the difference in shape is determined by the
appearance of the interference fringes (Newton’s rings) formed
between the two. The relative curvatures of the two surfaces can be
determined by noting whether the gage contacts the work at the edge
or the center. If the number of rings is counted, the difference between
the two radii can be closely approximated from the formula


R ≈ N	 � �
2

(15.3)

where 
R is the radius difference, N is the number of fringes, 	 is the
wavelength of the illumination, R is the radius of the test plate, and d
is the diameter over which the measurement is made. One fringe indi-
cates a change of one-half wavelength in the spacing between the two
surfaces. A noncircular fringe pattern is an indication of an aspheric
surface. An elliptical fringe indicates a toroidal surface.

2R
�
d
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Small corrections are made either by adjustment of the stroke of the
polishing machine or by scraping away portions of the polishing tool 
so that the wear is concentrated on the portion of the work which is 
too high.

Centering. After both surfaces of an element are polished, the lens is
centered. This is done by grinding the rim of the lens so that the
mechanical axis (defined by the ground edge of the lens) coincides with
the optical axis, which is the line between the centers of curvature of
the two surfaces. In visual centering the element is fastened (with wax
or pitch) to an accurately trued tubular tool on a rotating spindle.
When the lens is pressed on the tool, the surface against the tool is
automatically aligned with the tool and hence with the axis of rotation.
While the pitch is still soft, the operator slides the lens laterally until
the outer surface also runs true. If the lens is rotated slowly, any
decentration of either surface is detectable as a movement of the
reflected image (of a nearby target) formed by that surface, as indicat-
ed in Fig. 15.4. For high-precision work, the images may be viewed
with a telescope or microscope to increase the operator’s sensitivity to
the image motion. The periphery of the lens is then ground to the
desired diameter with a diamond-charged wheel. Bevels or protective
chamfers are usually ground at this time.

For economical production of moderately precise optics, a mechani-
cal centering process is used. In this method, called “cup” or “bell” cen-
tering, the lens element is gripped between two accurately trued
tubular tools. The pressure of the tools causes the lens to slip sideways
until the distance between the tools is at a minimum, thus centering
the lens. The lens is then rotated against a diamond wheel to grind the
diameter to size.
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Figure 15.4 Left: In visual centering the lens is shifted laterally until no
motion of the image of a target reflected from the lens surface can be detected
as the lens is rotated. Right: In mechanical centering the lens is pressed
between hollow cylinders. It slides laterally until its axis coincides with the
common axis of the two tools.



The manufacture of the lens is completed by low-reflection coating
the surfaces as required and by cementing, if the element is part of a
compound component; these processes are outlined in Chap. 7.

Modifications of the standard processing techniques are sometimes
required for unusual materials. Brittle materials (e.g., calcium fluo-
ride) must be treated gently, especially in grinding. A finer, softer abra-
sive is required; sometimes soap is added to the abrasive and soft
brass grinding tools are used in place of cast iron. At the other
extreme, sapphire (Al2O3) cannot be processed with ordinary materials
because of its extreme hardness, and diamond powder is used for both
grinding and polishing.

Materials which are subject to attack by the grinding or polishing
slurry are sometimes processed using a saturated solution of the opti-
cal material in the liquid of the slurry. For example, if a glass is
attacked by water, one could make up the slurry with water in which
a powder of the glass has been boiled or soaked for several days.
Alternately a slurry of kerosene or oil sometimes works well. Other liq-
uids which have been used in slurries include ethylene glycol, glycerol,
and triacetate.

High-speed processing. For optics where the surface accuracy require-
ments are not high, the processes described above can be materially
accelerated. Ordinary grinding usually takes tens of minutes.
Polishing may take from 1 or 2 hours up to 8 or 10 hours in difficult
cases. These operations can be speeded up by increasing both the
speed of the spindle rotation and the pressure between work and tool.
Tool wear and deformation are then a problem, so tools which are very
resistant to change are used. Grinding is accomplished using tools
faced with pellets or pads of diamond particles sintered in a metal
matrix; loose abrasive is not used. This is called pellet grinding or pel-
grinding. Polishing is done with a metal (typically aluminum) tool
faced with a thin (0.01 to 0.02 in) layer of plastic (e.g., polyurethane).
Processing times are to the order of minutes; a surface may be gener-
ated, ground, and polished in 5 or 10 minutes. Since the tools are not
compliant, it is necessary that the radius from the generator have an
exact relationship to the radius of the diamond pellet grinding tool,
and that the ground radius match (to within a few fringes, à la Eq.
15.3) the radius required by the hard plastic polishing tool. This
process is widely used for sunglasses, filters, inexpensive camera lens-
es, and the like. The surface geometry tends to be marginal as regards
accuracy of figure, and the fixed-abrasive grinding does cause some
subsurface fracturing, but the process is fast and economical. The tool-
ing required and the fine-tuning adjustments of the steps of the
process limit its application to large-quantity production.
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Nonspherical surfaces. Aspherics, cylinders, and toroids do not share
the universality of the spherical surface, and their manufacture is dif-
ficult. While a sphere is readily generated by a random grinding and
polishing (because any line through the center is an axis), optical
aspherics have only one axis of symmetry. Thus the simple principle of
random scrubbing which generates a sphere must be replaced by oth-
er means. An ordinary spherical optical surface is a true sphere to
within a few millionths of an inch. For aspherics this precision can
only be obtained by a combination of exacting measurement and
skilled “hand correction” or its equivalent.

Cylindrical surfaces of moderate radius can be generated by work-
ing the piece between centers (i.e., on a lathe). However, any irregu-
larity in the process tends to produce grooves or rings in the surface.
This can be counteracted by increasing the rate of working along the
axis relative to the rate of rotation about the axis. It is difficult to avoid
a small amount of taper (i.e., a conical surface) in working cylinders.
Large-radius cylinders are difficult to swing between centers and are
usually handled with an x-y rocking mechanism which constrains the
axes of work and tool to parallelism so as to avoid a saddle surface.

Aspherics of rotation, such as paraboloids, ellipsoids, and the like,
can be made in modest production quantities if the precision required
of the surface is of a relatively low order, as, for example, in an eye-
piece. The usual technique is to use a cam-guided grinding rig (with a
diamond wheel) to generate the surface as precisely as possible. The
problem is then to fine-grind and polish the surface without destroy-
ing its basic shape. The difficulty is that any random motion which
works the surface uniformly tends to change the surface contour
toward a spherical form. Extremely flexible tools which can follow the
surface contour are required; however, their very flexibility tends to
defeat their purpose, which is to smooth or average out small local
irregularities left in the surface by the generating process. Pneumatic
(i.e., air-filled, elastic) or spongy tools have proved quite successful for
this purpose.

Where precise aspherics are required, “hand” or “differential” cor-
rection is practically a necessity. The surface is ground and polished as
accurately as possible and is then measured. The measurement tech-
nique must be precise enough to detect and quantify the errors. For
high-quality work, this means that the measurements must be able to
indicate surface distortions of a fraction of a wavelength. The Foucault
knife edge test and the Ronchi grating tests are widely used for this
purpose; these tests can usually be applied directly to the aspheric sur-
face, although there are many aspheric applications (e.g., the Schmidt
corrector plate) where the test must be applied to the complete system
to determine the errors in the aspheric.
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When the surface is close to the required figure, it can be tested with
an interferometer, just as a spherical surface on a lens is tested with a
test plate (which is of course a simple interferometer). However, for a
nonspherical surface some sort of arrangement is necessary to reshape
the wave front reflected from the aspheric so that it matches the ref-
erence wave front of the interferometer. For a conic surface, auxiliary
mirrors can be arranged so that the conic is imaging from focal point
to focal point, and a perfect conic will then produce a perfectly spheri-
cal wave front. A more generally applicable approach is the use of a
null lens, which is designed and very carefully constructed to distort
the reflected wave front into an exactly spherical shape. For a parab-
oloid tested at its center of curvature, the null lens can be as simple as
one or two plano-convex lenses whose undercorrected spherical cancels
the overcorrection of the paraboloid. For general aspherics, the null
lens may need to be quite complex.

When the surface errors have been measured and located, the sur-
face is corrected by polishing away the areas which are too high. This
can be accomplished (with a full-size polisher and a very short stroke)
by scraping away those areas of the polisher which correspond to the
low areas of the surface. In making a paraboloid of low aperture, such
as used in a small astronomical telescope, the surface is close enough
to a sphere that the correction can often be effected simply by modify-
ing the stroke of the polisher. However, for large work and for difficult
aspherics, it is usually better to use small or ring (annular) tools and
to wear down the high zones by a direct attack. A certain amount of
delicacy and finesse is required for this approach; if the process is con-
tinued for a minute or so longer than required, the result is a
depressed ring which then requires that the entire balance of the sur-
face be worn down to match this new low point.

A few companies have developed equipment which more or less auto-
mates this process. In one technique, a computer-controlled polisher
uses a small polishing tool (or a tool consisting of three small tools
which are driven to spin about their centroid) which is directed to
dwell on the regions of the work which are high and need to be pol-
ished down. The location and dwell time are determined from inter-
ferograms of the surface, plus a knowledge of the wear pattern which
the polishing tool produces. The use of a small, driven polisher means
that the device is not limited to polishing annular zones on the work,
and thus unsymmetrical surface errors can be efficiently corrected.

Another computer-controlled process is called magnetorheologic pol-
ishing. Here the polishing slurry includes a magnetic iron compound.
The slurry is moved past the rotating lens, and at the lens a magnetic
field causes the slurry to become stiff. This produces a localized pol-
ishing (or wearing) action on the surface. By rocking, spinning, and
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advancing the lens into the moving slurry under computer control, the
surface can be locally polished to achieve the desired surface figure.
Again, an unsymmetrical figure error can be corrected by synchroniz-
ing the localized polishing action with the position of the lens.

Single-point diamond turning. Extremely accurate, numerically con-
trolled lathes and milling machines are now available which are capa-
ble of generating both the finish and the precise geometry required for
an optical surface. The cutting tool used is a single-crystal diamond,
and the optic is machined as in a lathe or as with a fly-cutter in a mill.
A single-point machining operation leaves tool marks—the finished
surface is scalloped, and in some respects resembles a diffraction grat-
ing. This is one limitation of the process, and finished surfaces are
often lightly “postpolished” to smooth out the turning marks. The 
more severe limitation is that only a few materials are suitable for
machining, and unfortunately, optical glass is not one of them.
However, several useful materials are turnable, including copper, nick-
el, aluminum, silicon, germanium, zinc selenide and sulfide, and, of
course, plastics. Thus mirrors and infrared optics can be fabricated
this way. Infrared optics do not require the same level of precision as
do visual-wavelength optics, simply because a quarter-wave is almost
20 times larger at 10 �m than in the visible wavelengths. With this
process an aspheric surface is just about as easy to make as a spheri-
cal surface. It has found significant acceptance in the infrared and mil-
itary applications.

15.2 Optical Specifications and Tolerances

Many otherwise fully competent optical workers come to grief when it
is necessary for them to send their designs to the shop for fabrication.
The two most common difficulties are underspecification, in the sense
of incompletely describing what is required, and overspecification,
wherein tolerances are established which are much more severe than
necessary.

Optical manufacture is an unusual process. If enough time and
money are available, almost any degree of precision (that can be mea-
sured) can be attained. Thus, specifications must be determined on a
dual basis: (1) the limits which are determined by the performance
requirements of the system, and (2) the expenditure of time and mon-
ey which is justified by the application. Note well that optical toler-
ances which represent an equal amount of difficulty to maintain may
vary widely in magnitude. For example, it is not difficult to control the
sphericity of a surface to one-tenth of a micrometer; the comparable (in
terms of difficulty) tolerance for thickness is about 100 �m (0.1 mm),
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three orders of magnitude larger. For this reason it is rare to find “box”
tolerances in optical work; each dimension, or at least each class of
dimension, is individually toleranced.

Every essential characteristic of an optical part should be spelled out
in a clear and unambiguous way. Optical shops are accustomed to this,
and if a specification is incomplete, either time must be wasted in
questioning the specification to determine what the requirements are,
or the shop must arbitrarily establish a tolerance. Either procedure is
undesirable.

The following paragraphs are an attempt to provide a general guide
to the specification of optics. The discussion will include the basis for
the establishment of tolerances, the conventional methods of specify-
ing desired characteristics, and an indication of what tolerances a typ-
ical shop may be expected to deliver.

The intelligent choice of specifications and tolerances for optical fab-
rications is an extremely profitable endeavor. The guiding philosophy
in establishing tolerances should be to allow as large a tolerance as the
requirement for satisfactory performance of the optical system will
permit. Designs should be established with the aim of minimizing the
effect produced by production variations of dimensions. Frequently,
simple changes in mounting arrangements can be made which will
materially reduce fabrication costs without detriment to the perfor-
mance of a system. One should also be certain that the tightly speci-
fied dimensions of a system are the truly critical dimensions, so that
time and money are not wasted in adhering to meaningless demands
for accuracy.

Surface quality. The two major characteristics of an optical surface are
its quality and its accuracy. Accuracy refers to the dimensional char-
acteristics of a surface, i.e., the value and uniformity of the radius.
Quality refers to the finish of the surface, and includes such defects as
pits, scratches, incomplete or “gray” polish, stains, and the like.
Quality is usually extended to similar defects within the element, such
as bubbles or inclusions. In general (with the exception of incomplete
polish which is almost never acceptable) these factors are merely cos-
metic or “beauty defects” and may be treated as such. The percentage
of light absorbed or scattered by such defects is usually a completely
negligible fraction of the total radiation passing through the system.
However, if the surface is in or near a focal plane, then the size of the
defect must be considered relative to the size of the detail it may
obscure in the image. Also, if a system is especially sensitive to stray
radiation, such defects may assume a functional importance. In any
case, one may evaluate the effect of a defect by comparing its area with
that of the system clear aperture at the surface in question.
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The standards of military specification MIL-O-13830 (now formally
obsolete) are widely utilized in industry. The surface quality is speci-
fied by a number such as 80-50, in which the first two digits relate to
the apparent width of a tolerable scratch and the second two indicate
the diameter of a permissible dig, pit, or bubble in hundredths of a mil-
limeter. Thus, a surface specification of 80-50 would permit a scratch
of an apparent width which matched (by visual comparison) a #80
standard scratch and a pit of 0.5-mm diameter. The total length of all
scratches and the number of pits are also limited by the specification.
In practice, the size of a defect is judged by a visual comparison with
a set of graded standard defects. Digs and pits can, of course, be read-
ily measured with a microscope; unfortunately the apparent width of
a scratch is not directly related to its physical size, and this portion of
the specification is not as well founded as one might desire. The con-
cept of a visual comparison with a standard is a good and efficient one.

McLeod and Sherwood, who originated this method of specifying
surface quality, in their article describing it said that the number of a
scratch was equal to the measured width in microns (micrometers) of
a scratch made by a certain technique. Recently the government has
used a relationship which indicates that the width in micrometers is
only one-tenth of the scratch number. There is a widespread (and not
unreasonable) suspicion that the widths of the standard scratches
(which are maintained on physical pieces of glass) have become small-
er in the decades since the 1940s (when the system originated.)

Surface qualities of 80-50 or coarser (i.e., larger) are relatively easily
fabricated. Qualities of 60-40 and 40-30 command a small premium in
cost. Surfaces with quality specifications of 40-20, 20-10, 10-5, or simi-
lar combinations require extremely careful processing, and the more
critical are considerably more expensive to fabricate. Such specifica-
tions are usually reserved for field lenses, reticle blanks, or laser optics.

Surface accuracy. Surface accuracy is usually specified in terms of the
wavelength of light from a sodium lamp (0.0005893 mm) or HeNe laser
(0.0006328 mm). It is determined by an interferometric comparison of
the surface with a test plate gage, by counting the number of (Newton’s)
rings or “fringes” and examining the regularity of the rings. As previ-
ously mentioned, the space between the surface of the work and the
test plate changes one-half wavelength for each fringe. The accuracy of
the fit between work and gage is described in terms of the number of
fringes seen when the gage is placed in contact with the work.

Test plates are made truly flat or truly spherical to an accuracy of a
small fraction of a fringe. Spherical test plates, however, have radii
which are known to an accuracy only as good as the optical-mechani-
cal means which are used to measure them. Thus the radius of a test
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plate is frequently known only to an accuracy of about one part in a
thousand or one part in ten thousand. Further, test plates are expen-
sive (several hundred dollars per set) and are available as “stock tool-
ing” only in discrete steps. Thus it frequently pays to enquire what
radii the optical shop has as standard tooling.

The usual shop specification for surface accuracy is thus with
respect to a specific test plate, and it takes the form of requiring that
the piece must fit the gage within a certain number of rings and must
be spherical (or flat in the case of plane surfaces) within a number of
rings. A fit of from five to ten rings, with a sphericity (or “regularity”)
of from one-half to one ring is not a difficult tolerance. Fits of from one
to three rings with correspondingly better regularity can be achieved
in large-scale production at a very modest increase in cost. Note that
an irregularity of a small fraction of a ring is difficult to detect when
the fit is poor. Thus, little is saved by specifying a ten-ring fit and a
quarter-ring sphericity, since the fit must be considerably better than
ten rings to be certain that the irregularity is less than one-quarter
ring. The usual ratio is to have a fit of no worse than four or five times
the maximum allowable irregularity. The change in radius due to a
poor fit is frequently negligible in effect. For example, the radius dif-
ference between two (approximately) 50-mm radii at a 30-mm diame-
ter which corresponds to five rings is (by Eq. 15.3) only about 33 �m.

The surface figure can be measured easily with an interferometer.
While it is more difficult to control radius value with an interferome-
ter than with a test plate, the interferometer is far superior when it
comes to testing for sphericity or regularity. This is because the effec-
tive radius of the comparison wave front can be adjusted to match that
of the surface under test, and also because the viewpoint of the inter-
ferometer is always normal to the surface and is thus not subject to the
obliquity errors which afflict test plate readings.

If possible, one should avoid specifying accurate surfaces on pieces
whose thickness-to-diameter ratio is low. Such elements tend to spring
and warp in processing, and extreme precautions are necessary to hold
an accurate surface figure. A common rule of thumb is to make the axi-
al thickness at least one-tenth of the diameter for negative elements;
where there is a good edge thickness, one-twentieth or one-thirtieth of
the diameter is sometimes acceptable. For extremely precise work,
especially on plane surfaces, the optician might prefer a thickness of
one-fifth to one-third of the diameter.

The performance effects of errors in radius values (i.e., departures
from the nominal design radii) are usually not too severe. In fact, it is
the practice of some purchasers of optics not to indicate a tolerance on
the specified radii, but to specify final performance in terms of focal
length and resolution. It is usually possible for a well-tooled optical
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shop to select judiciously (from its tooling list) nearby radii which pro-
duce a result equivalent to the nominal design. If tolerances are spec-
ified on radius values, one should bear in mind the fact that most
effects produced by a radius variation are not proportional to 
R, but
to 
C (or 
R/R2). To take a simple example, we can differentiate the
thin-lens focal-length equation

� � � (n � 1) (C1 � C2) � (n � 1) � � �
with respect to the first surface to get the following:

d� � (n � 1) dC1

df � f 2 (n � 1) dC1 � f 2 (n � 1)

In a more complex system, the change in focal length resulting from
a change in the ith curvature is approximated by

df ≈ � � f 2 (n′i � ni) dci

df ≈ � � f 2 (n′i � ni)

The point is that if a uniform tolerance is to be established for all
radii in a system, the uniform tolerance should be on curvature, not on
radius. Therefore, radius tolerances should be proportional to the
square of the radius. For example, given a lens with a radius of 1 in on
one side and a radius of 10 in on the other, if we vary the 1-in radius
by 0.001 in, the effect on the focal length is the same as a change of
0.100 in on the 10-in radius. If the second surface had a radius of 100
in, then the equivalent change would be about 10 in.

The preceding is, of course, based on focal-length considerations
only. With regard to aberrations, it is difficult to generalize, since one
surface of a system may be very effective in changing a given aberra-
tion while another may be totally ineffective. The relative sensitivity
is determined by the heights of the axial and principal rays at the sur-
face, the index break across the surface, and the angles of incidence at
the surface. A good estimate of the effect that any tolerance has on the
aberrations of a system can be determined by use of the third-order
surface contribution equations of Chap. 10.

The effect of surface irregularity is more readily determined.
Consider the case where the Newton’s rings are not circular; this is an
indication of axial astigmatism, since the power in one meridian is
stronger than in the other. Here it is convenient to call on the Rayleigh
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quarter-wave criterion. The OPD produced by a “bump” of height H on
a surface is equal to H(n′ � n), or, expressing it in terms of interfer-
ence rings (remembering that each fringe represents one-half wave-
length change in surface contour),

OPD � 12 (#FR) (n′ � n) wavelengths

where (#FR) is the number of fringes of irregularity.
Thus, to stay within the Rayleigh criterion, the total OPD, summed

over the whole system, should not exceed one-fourth wavelength; this
is expressed by the following inequality:

∑ (#FR) (n′ � n) � 0.5

Thus, a single element of index 1.5 could have one-half fringe of
astigmatism (or any other surface irregularity) on both surfaces before
the Rayleigh criterion was exceeded (assuming that the nominal cor-
rection was perfect and that the irregularities were additive).

Note that the expressions above do not take into account the fact
that the system will probably be refocused to minimize the effects of
any surface irregularity. See the discussion of OPD and spherical aber-
ration in Sec. 11.3, for example. For astigmatism, refocusing reduces
the OPD by a factor of 2.

Thickness. The effects of thickness and spacing variation on the per-
formance of a system are readily analyzed, either by raytracing or by
a third-order aberration analysis. The importance of thickness varia-
tion differs greatly from system to system. In the negative doublets of
a Biotar (double-Gauss) objective, the thickness is extremely critical,
especially as regards spherical aberration; for this reason the crown
and flint elements are usually selected so that their combined thick-
ness is very close to the design nominal. At the other extreme, the
thickness variation of a planoconvex eyepiece element may be almost
totally ignored, since it ordinarily has little or no effect on anything.

In general, thicknesses and spacings may be expected to be critical
where the slope of the marginal axial ray is large. Anastigmats in gen-
eral, and meniscus anastigmats in particular, are prone to this sensi-
tivity. High-speed lenses, large-NA microscope objectives, and the like
are usually sensitive.

Unfortunately the thickness of an optical element is not as readily
controlled as some of the other characteristics. In production proce-
dures where many elements are processed on the same block, the
maintenance of a uniform nominal thickness requires precise blocking
and tooling. The grinding operation, while precise enough in terms of
radius, is difficult to control in terms of its extent. For close thickness
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control, the generating operation must be accurate and each subse-
quent grinding stage must be exactly timed so that the proper finish,
radius, and thickness are arrived at simultaneously.

A reasonable thickness tolerance for precise work is ±0.1 mm
(±0.004 in). This can cause a shop some difficulty on certain lens
shapes and on larger lenses; where a relaxation is possible, a tolerance
of ±0.15 or ±0.2 mm is more economical. It is possible to hold ±0.05 mm
in large-scale production by taking care throughout the fabrication
procedure. The rejection rate at this tolerance can become disastrous
if the smallest mischance occurs. Of course it is possible, by hand-
working and selection, to produce pieces to any desired tolerance lev-
el; the author has seen ±0.01 mm held in moderate production
quantities (although at rather immoderate cost).

Centering. The tolerances in centering are (1) on the diameter of the
piece, and (2) on the accuracy of the centering of the optical axis with the
mechanical axis. If the piece is to be centered (i.e., as a separate opera-
tion), the diameter can be held to a tolerance of plus nothing, minus 0.03
mm by ordinary techniques, and this is the standard tolerance in most
shops. A small economy is effected by a more liberal tolerance. Tighter
tolerances are possible, but are not often necessary for ordinary work.

The concentricity of an element is most conveniently specified by its
deviation. This is the angle by which an element deviates an axial ray
of light directed toward the mechanical center of the lens. The devia-
tion angle is an especially useful measure of decentration, since the
deviation of a group of elements is simply the (vector) sum of the devi-
ations of the individual elements. Figure 15.5 is an exaggerated sketch
of a decentered element. The optical and mechanical axes are shown
separated by an amount 
 (the decentration). Since a ray parallel to
the optical axis must pass through the focal point, the angular devia-
tion � in radians of the ray aimed along the mechanical axis is given
by the decentration divided by the focal length.
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Figure 15.5 Showing the relationships between the optical
and mechanical axes, and the decentration and angle of
deviation in a decentered lens.



� � (15.4)

Note that a decentered element may be regarded as a centered ele-
ment plus a thin wedge of glass. The angle of the wedge W is given by
the difference between the maximum and minimum edge thicknesses
divided by the diameter of the element

W � radians (15.5)

Since the deviation of a thin prism is given by D � (n � 1)A, we can
similarly relate the wedge angle of an element to its deviation by

� � (n � 1) W radians (15.6)

If an element is centered on a high-production mechanical (clamp-
ing) centering machine, the limit on the accuracy of the concentricity
obtained is determined by the residual difference in edge thickness
which the cylindrical clamping tools cannot “squeeze out.” On most
machines, this is to the order of 0.0005 in when residual tooling and
spindle errors are also taken into account. Thus the residual wedge
angle for a lens with a diameter d is given by

W �

and the resulting deviation is

� �

Thus, for ordinary lenses (n � 1.5 to 1.6) a reasonable estimate of
the deviation is given by

� � minutes (15.7)

where d is in inches, and the centering is done mechanically.
If the centering is accomplished visually (as indicated in the left-hand

sketch of Fig. 15.4) then the ability of the eye to detect motion is the lim-
iting factor. If we assume that the eye can detect an angular motion of
6 or 7 � 10�5 radians, then the deviation will be approximately

� � (n � 1) � ± 0.06� ± (contact and spindle errors) (15.8)

where � is in minutes and R is the radius of curvature of the outer sur-
face in inches.*

1
�
R

1
�
d

0.0005 in (n � 1)
���

d

0.0005 in
��

d

Emax � Emin��
d



�
f
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*Equation 15.8 assumes that the image reflected from the outer radius is viewed at
10 in. This is obviously impossible if R is a convex surface with a radius longer than 20
in, and it is impractical if R is a long concave radius. Thus for |R| � 20 in, one should
substitute 0.05 for the 1/R term.



The term (n � 1)/R is from the visually undetected “wobble” of the
outer radius and the 0.06 (n � 1) term is due to the tilt in the tool
which the eye could not detect in the truing of the tool (this is tested
by pressing a flat glass plate against the rotating tool and observing
any motion in the reflected image). The eye can, of course, be aided by
means of a telescope or microscope which will further reduce the
amount of decentration which can be detected by a factor equal to the
magnification.

Occasionally lenses are not put through a separate centering opera-
tion. When this is the case, the concentricity of the finished lens is
determined by the wedge angle which is left in by the grinding opera-
tions. If the blocking tooling is carefully worked out, it is possible to
produce elements with a wedge (i.e., the difference between the edge
thickness of opposite edges) to the order of 0.1 or 0.2 mm. Centering is
often omitted on inexpensive camera lenses, condensers, magnifiers,
or almost any single element of a simple optical system. Simple 
elements made from rounded circles of window glass are often left 
uncentered.

Prism dimensions and angles. The linear dimensions of prisms can be
held to tolerances approximating those of an ordinary machined part,
although the fabrication requirements of a prism are more difficult
because of the finish and accuracy requirements of an optical surface.
Thus tolerances of 0.1 or 0.2 mm are usually reasonable and tighter
tolerances are possible.

Prism angles can be held to within 5 or 10 minutes of nominal by the
use of reasonably good blocking forms. Indeed it is possible, although
exceedingly difficult, to make angles accurate to a few percent of these
tolerances if one takes exquisite pains with the design, fabrication,
correction, and use of the blocking tools. Usually angles which must be
held to tolerances of a few seconds (such as roof angles) are “hand cor-
rected.” Such angles are checked with an autocollimator, either by
comparison with a standard or by using the internal reflections to
make the piece a retrodirector. Angles of 90° and 45° among others can
be self-checked in this way since their internal reflections form con-
stant-deviation systems of 180° deviation (as discussed in Chap. 4).

Prism size tolerances are usually based on the necessity to limit the
image displacement errors (lateral or longitudinal) which they pro-
duce. Angular tolerances are usually established to control angular
deviation errors. One can usually find one or two angles in a prism sys-
tem which are more critical than the others; these can be tightly con-
trolled and the other angles allowed to vary. For example, with respect
to the deviation of a pentaprism, an angular error in the 45° angle
between the reflecting faces is six times as critical as an error in the
90° angle between the entrance and exit faces, and the other two
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angles have no effect on the deviation. On occasion, prism tolerances
are based on aberration effects. Since a prism is equivalent to a plane
parallel plate and introduces overcorrected spherical and chromatic;
an increase in prism thickness in a nominally corrected system will
overcorrect these aberrations. Some prism angle errors are equivalent
to the introduction of thin-wedge prisms into the system. The angular
spectral dispersion of a thin wedge is (n � 1)W/V (where W is the
wedge angle and V is the Abbe V-value of the glass) and the resultant
axial lateral color may limit the allowable angular tolerances.

Materials. The characteristics of the refractive materials used in opti-
cal work which are of primary concern are index, dispersion, and
transmission. For ordinary optical glass procured from a reputable
source, visual transmission is rarely a problem. Occasionally, where a
thick piece of dense glass is used in a critical application, transmission
limits or color must be specified. Similarly, the dispersion, or V-value,
is seldom a problem, except in special cases. For apochromatic systems
where the partial dispersion ratio is exceedingly critical, very special
precautions are required.

The index of refraction is usually of prime concern in optical glass.
As indicated in Chap. 7, the standard index tolerance is ±0.001 or
±0.0015, depending on the glass type. The glass supplier can hold the
index more closely than this by selection or by extra care in the pro-
cessing; either increases the cost somewhat. In practice the glass sup-
plier will ordinarily use up only a fraction of this tolerance, since the
index within a single melt or batch of glass is remarkably consistent.
Thus, within a single lot of glass the index may vary only one in the
fourth place. However, bear in mind that this variation may be cen-
tered about a value which is 0.001 or 0.0015 from the nominal index.
It is sometimes economical to accept the standard tolerance and to
adjust a design to compensate for the variation of a lot of glass in cas-
es where the index is critical.

Transmission and spectral characteristics are often poorly specified.
For filters and coatings, ambiguity can usually be avoided by specify-
ing spectral reflection (or transmission) graphically, i.e., by indicating
the area of the reflection (or transmission) versus wavelength plot
within which the characteristics of the part must lie. One should also
indicate whether or not the spectral characteristics outside the speci-
fied region are of importance. For example, in a bandpass filter, it is
important to indicate how far into the long- and short-wavelength
regions the blocking action of the filter must extend.

Figure 15.6 is a table of typical tolerances and may be used as a guide.
Bear in mind, however, that the values given are typical and that there
are many special cases that this sort of tabulation cannot cover.
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Additive tolerances. In analyzing an optical system to determine the
tolerances to be applied to specific dimensions, one can readily calcu-
late the partials of the system characteristics with respect to the
dimensions under consideration. Thus, one obtains the value of the
partial derivative of the focal length (for example) with respect to each
thickness, spacing, curvature, and index; likewise for the other char-
acteristics, which may include back focus, magnification, field cover-
age, as well as the aberrations or wave-front deformations. Then each
dimensional tolerance, multiplied by the appropriate derivative, indi-
cates the contribution of that tolerance to the variation of the charac-
teristic. Now if it were necessary to be absolutely certain that (for
example) the focal length did not vary more than a certain amount,
one would be forced to establish the parameter tolerances so that the
sum of the absolute values of the derivative-tolerance products did not
exceed the allowable variance. Although this “worst-case” approach is
occasionally necessary, one can frequently allow much larger toler-
ances by taking advantage of the laws of probability and statistical
combination.

As a simple example, let us consider a stack of disks, each 0.1 in
thick. We will assume that each disk is made to a tolerance of ±0.005
in and that the probability of the thickness of the disk being any giv-
en value between 0.095 and 0.105 in is the same as the probability of
its being any other value in this range. This situation is represented
by the rectangular frequency distribution curve of Fig. 15.7a. Thus, for
example, there is 1 in 10 chance that any given disk will have a thick-
ness between 0.095 and 0.096 in. Now if we stack two disks, we know
that it is possible for their combined thicknesses to range from 0.190
to 0.210 in. However, the probability of the combination having either
of these extreme thickness values is quite low. Since the probability of
either of the disks having a thickness between 0.095 and 0.096 is 1 in
10, if we randomly select two disks, the probability of both falling in
this range is 1 in 100. Thus, the probability of a pair of disks having a
thickness between 0.190 and 0.192 is 1 in 100; similarly for a combined
thickness of 0.208 to 0.210 in. The probability of a combined thickness
of 0.190 to 0.191 (or 0.209 to 0.210) is much less; 1 in 400.

The frequency distribution curve representing this situation is
shown in Fig. 15.7b as a triangular distribution. Figure 15.7c shows
frequency distribution curves for 1-, 2-, 4-, 8-, and 16-element assem-
blies. These curves have been normalized so that the area under each
is the same and the extreme variations have been equalized. The
important point here is that the probability of an assembly taking on
an extreme value is tremendously reduced when the number of ele-
ments making up the assembly is increased. For example, in a stack 
of 16 disks with a nominal total thickness of 1.6 in and a possible 
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variation in thickness of ±0.080 in, the probability of a random stack
having a thickness less than 1.568 in or more than 1.632 in (i.e.,
±0.032 in) is less than 1 in 100.

The importance of this in setting tolerances is immediately appar-
ent. In the stacked-disks example, if the range of thicknesses repre-
sented by 1.568 to 1.632 in for 16 disks were the greatest variation
that could be tolerated, we could be absolutely sure of meeting this
requirement only by tolerancing each individual disk at ±0.002 in.
However, if we were willing to accept a rejection rate of 1 percent in
large-scale production, we could set the thickness tolerance at ±0.005
in. If the cost of the pieces made to the tighter tolerance exceeded the
cost of the pieces made to the looser tolerance by as little as 1 percent
(plus one sixteen-hundredth of the assembly, processing, and final
inspection costs), the looser tolerance would result in a less costly
product.

In a frequency distribution curve such as those shown in Fig. 15.7
the area under the curve between two abscissa values represents the
(relative) number of pieces which will fall between the two abscissa
values. Thus the probability of a characteristic falling between two
values is the area under the curve between the two abscissas divided
by the total area under the curve.
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Figure 15.7 Showing the man-
ner in which additive tolerances
combine in assembly. Plot A
shows a uniform probability in a
dimension of a single piece.
When two such pieces are com-
bined, the resulting frequency
distribution is shown in B.
Normalized curves for assem-
blies of 1, 2, 4, 8, and 16 pieces
are shown in C.



The “peaking-up” characteristic of multiple assemblies can also be
represented by the two plots shown in Fig. 15.8. The graph on the left
shows the percentage of assemblies which fall within a given central
fraction of the total tolerance range as a function of that fraction. The
number of elements per assembly is indicated on each curve. These
curves were derived from Fig. 15.7c. The graph on the right in Fig.
15.8 is simply another way of presenting the same data. If one were
interested in an assembly of 10 elements, the intersection of the
abscissa corresponding to 10 and the appropriate curve would indicate
that all but 0.2 percent (using the 99.8 percent curve) of the assemblies
would fall within 0.55 of the total tolerance range represented by the
sum of all 10 tolerances, and that over one-half of the assemblies
(using the 50 percent curve) would fall within 0.15 of the total 
possible range.

The preceding discussion has been based upon the unlikely assump-
tions that (1) each individual piece had a rectangular frequency dis-
tribution, and (2) each tolerance was equal in effect. This is rarely true
in practice. The frequency distribution will, of course, depend on the
techniques and controls used in fabricating the part, and the tolerance
sizes may represent the partial derivative tolerance products from
such diverse sources as tolerances on index, thickness, spacing, and
curvature. Note, however, that in Fig. 15.7c the progression of curves
may be started at any point. If, for example, the production methods
produce a triangular distribution (such as that shown for an assembly
of two elements), then the curve marked 4 (for “four elements”) will be
the frequency distribution for two elements (of triangular distribution)
and so on.

Note also that as more and more elements are included in the
assembly, the curve becomes a closer and closer approximation to the
normal distribution curve which is so useful in statistical analysis
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Figure 15.8 Probability distributions of additive tolerances in multiple assemblies.
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(except that the tolerance-type curves do not go to infinity as do nor-
mal curves). One useful property of the normal curve for an additive
assembly is that its “peakedness” is proportional to the square root of
the number of elements in assembly. Thus if 99 percent of the individ-
ual pieces are expected to fall within some given range, then for an
assembly of 16 elements, 99 percent would be expected to fall within
�1/16�, or one-quarter of the total range. A brief examination will indi-
cate that even the rectangular distribution assumed for Figs. 15.7 and
15.8 tends to follow this rule when there are more than a few elements
in the assembly.

A rule of thumb frequently used to establish tolerances may be rep-
resented as follows:

T ≈ �
n

i � 1
ti

2	 (15.9)

This is frequently referred to as the RSS rule, shorthand for the
square root of the sum of the squares. What the RSS rule means is
this: If some percentage (say 99 percent) of the part tolerances pro-
duces effects less than t (and varies according to a normal, or gauss-
ian, distribution), then the same percentage (i.e., 99 percent in our
example) of the assemblies will show a total tolerance effect less 
than T.

While this section may seem to be a far cry from optical engineering,
consider that a simple Cooke triplet has the following dimensions
which affect its focal length and aberrations: six curvatures, three
thicknesses, two spacings, three indices, and three V-values. These
total fourteen for monochromatic characteristics and seventeen for
chromatic aberrations. Such a system is eminently qualified for sta-
tistical treatment. Note that the validity of this approach does not
depend on a large production quantity; it depends on a random combi-
nation of a certain number of tolerance effects.

There are two obvious features of the RSS rule which are well worth
noting. One is the square root effect: If you have n tolerance effects of
a size ±x, then the RSS rule says that a random combination will pro-
duce an effect equal to ±x times the square root of n. For example, giv-
en 16 tolerance effects of ±1 mm, we should expect a variation of only
±4 mm, not ±16 mm. The other feature is that the larger effects dom-
inate the combination. As an example, consider a case with nine toler-
ances of ±1 mm and one tolerance of ±10 mm. If we use the RSS rule
on this, we get an expected variation equal to the square root of 109,
or ±10.44 mm. Compare this with the fact that the single ±10-mm tol-
erance has an RSS of ±10 mm. The addition of the nine ±1-mm toler-
ances changed the expected variation by only 4.4 percent.
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One possible way to establish a tolerance budget using this princi-
ple is as follows:

1. Calculate the partial derivatives of the aberrations with respect to
the fabrication tolerances (radius, asphericity, thickness and spac-
ing, index, homogeneity, surface tilt, etc.). Express the aberrations
as OPDs (wave-front deformation).

2. Select a preliminary tolerance budget. Figure 15.6 can be used as a
guide to appropriate tolerance values.

3. Multiply the individual tolerances by the partial derivatives calcu-
lated in step 1.

4. Compute RSS for all the aberrations for each individual tolerance.
This will indicate the relative sensitivity of each tolerance.

5. Compute RSS for all of the effects calculated in step 4 combined.

6. Compare the results of step 5 with the performance required of the
system. This can be done by computing the RSS for the design OPD
(as indicated by its MTF or whatever measure is convenient) com-
bined with the tolerance budget OPD and using the material of
Chap. 11 to determine the resulting MTF or Strehl ratio.

7. Adjust the tolerance budget so that the result of step 6 is equal to
the required performance. Since the larger effects dominate the
RSS, if you are tightening the tolerances (as is quite likely on 
the first go-round), you should tighten the most sensitive ones (and
possibly loosen the least sensitive). Note that there is no economic
gain if you loosen tolerances beyond the level at which costs or
prices cease to go down. Conversely, one should be sure that the tol-
erances are not tightened beyond a level at which fabrication
becomes impossible—since cost rises asymptotically toward infinity
as this level is approached.

8. After one or two adjustments (steps 2 through 7) the tolerance bud-
get should converge to one which is reasonable economically and
which will produce an acceptable product.

If the tolerances necessary to get an acceptable performance are too
tight to be fabricated economically, there are several ways which are
commonly used to ease the situation:

1. A test plate fit is a redesign of the system using the measured val-
ues of the radii of existing test plates. This eliminates the radius
tolerance (except for the variations due to the test glass “fit” in the
shop, and any error in the measurement of the radius.)
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2. A melt fit can effectively eliminate the effects of index and disper-
sion variation. Again, this is a redesign, using the measured index
of the actual piece of glass to be used, instead of the catalog values.

3. A thickness fit uses the measured thicknesses of the actual fabri-
cated elements to be assembled; this amounts to an adjustment of
the airspaces during the assembly process.

The redesigns called for in all three “fitting” operations above, while
hardly trivial, are not major undertakings when an automatic lens
design program is used.

While the above may tend to induce a desirable relaxation in toler-
ances, one or two words of caution are in order. As previously men-
tioned, the index of refraction distribution within a melt or lot of glass
may or may not be centered about the nominal value. When it is cen-
tered about a nonnominal value, the preceding analysis is valid only
with respect to the central value, not the nominal value. Further, in
some optical shops, there is a tendency to make lens elements to the
high side of the thickness tolerance; this allows scratched surfaces to
be reprocessed and will, of course, upset the theoretical probabilities.
Another tendency is for polishers to try for a “hollow” test glass fit, i.e.,
one in which there is a convex air lens between the test plate and the
work. This is done because a block of lenses which is polished “over” is
difficult to bring back. Surprisingly, these nonnormal distributions
have very little effect on Eq. 15.9 (if there are enough elements in the
assembly).

Thus, the situation is seen to be a complex one, but nonetheless one
in which a little careful thought in relaxing tolerances to the greatest
allowable extent can pay handsome dividends. For those who wish to
avoid the labor of a detailed analysis, the use of Eq. 15.9, or even the
assumption that the tolerance buildup will not exceed one-half or one-
third of the possible maximum variation, are fairly safe procedures in
assemblies of more than a few elements. Above all, when cost is impor-
tant, one should try to establish tolerances which are readily held by
normal shop practices.

15.3 Optical Mounting Techniques

General. In optical systems, just as in precise mechanical devices, it is
best to observe the basic principles of kinematics. A body in space has
six degrees of freedom (or ways in which it may move). These are
translation along the three rectangular coordinate axes and rotation
about these three axes. A body is fully constrained when each of these
possible movements is singly prevented from occurring. If one of 
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these motions is inhibited by more than one mechanism, then the body
is overconstrained and one of two conditions occurs; either all but one
of the (multiple) constraints are ineffective or the body (and/or the con-
straint) is deformed by the multiple constraint.

The laboratory mount indicated in Fig. 15.9 is a classical example of
a kinematic mount. Here it is desired to uniquely locate the upper
piece with respect to the lower plate. At A the ball-ended rod fits into
a conical depression in the plate. This (in combination with gravity or
a springlike pressure at D) constrains the piece from any lateral trans-
lations. The V-groove at B eliminates two rotations, that about a ver-
tical axis at A and that about the axis AC. The contact between the ball
end and the plate at C eliminates the final rotation (about axis AB).
Note that there are no extra constraints and that there are no critical
tolerances. The distances AB, BC, and CA can vary widely without
introducing any binding effects. There is one unique position which
will be taken by the piece; the piece may be removed and replaced and
will always assume exactly the same position.

A perfectly kinematic system is frequently undesirable in practice
and semikinematic methods are often used. These substitute small-
area contacts for the point and line contacts of a pure kinematic
mount. This is necessary for two reasons. Materials are often not rigid
enough to withstand point contact without deformation, and the wear
on a point contact soon reduces it to an area contact in any case.

Thus, in the design of an instrument, optical or otherwise, it is best
to start by defining the degrees of freedom to be allowed and the
degrees of constraint to be imposed. These can be outlined first by geo-
metrical points and axes and then reduced to practical pads, bearings,
and the like. This sort of approach results in a thorough and clear
understanding of the effects of manufacturing tolerances on the func-
tion of the device and often indicates relatively inexpensive and sim-
ple methods by which a high order of precision can be maintained.
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Figure 15.9 An example of a
kinematic locating fixture. The
three ball-ended legs of the stool
rest in a conical hole at A, a V-
groove (aligned with A) at B, and
on a flat surface at C.



Lens mounts. Optical lens elements are almost always mounted in a
close-fitting sleeve. A number of methods are used to retain the ele-
ment in the mount; several are sketched in Fig. 15.10. In sketches (a)
and (b) the lenses are retained by spring rings. In the left-hand mount
(a), the spring catches in a V-groove, and if the mount is properly exe-
cuted, the spring wire (which in its free state assumes a larger diam-
eter) presses against the face of the element and the outer face of the
groove. The lens is thus under a light pressure. The flat spring retain-
er (b) is less satisfactory, since the retainer will readily slip out unless
the spring is strong or has sharp edges which bite into the mount.
Other methods suitable for retaining low-precision elements include
staking or upsetting ears of metal from the cell which clamp a thin
metal washer over the lens element. Condenser systems are often
mounted between three rods which are grooved as indicated in Fig.
15.10c. This provides a loose mount which leaves the condenser ele-
ments free to expand with the heat from the projection lamp without
being constricted by the mount; it also allows cooling air to circulate
freely. Both points are especially important in the mounting of a heat
absorbing filter.

Where precision is required, the cell is fitted rather closely to the
lens. For good-quality optics the lens diameter may be toleranced
�0.000, �0.001 in and the inside cell diameter toleranced �0.001,
�0.000 in with 0.001� or 0.0005-in clearance between the nominal
diameters. For small lenses which demand high precision, these toler-
ances can be halved, at the expense of some difficulty in production.
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Figure 15.10 Several methods of
retaining optical elements. (a)
Wire spring ring in a V-groove;
(b) flat spring ring; (c) three
grooved rods at 120°; (d) and (e)
threaded lock ring; (f) spinning
shoulder, before burnishing and
(dotted) after; (g) cemented in
place with trough for cement
overflow.



Large-diameter optics are usually specified to somewhat looser toler-
ances. The lenses are most commonly retained by a threaded lock ring,
as indicated in Fig. 15.10d or e. Sometimes the lock ring has an
unthreaded pilot whose diameter is the same as the lens in order to be
certain that the lens will ride on the bored seat and not on the threads.
A separate spacer may be substituted for the pilot. The fit of the
threaded parts should be loose so that the lens takes its orientation
from the seat and shoulder, rather than from the threaded lock ring
which frequently cocks.

A lens may be spun into the mount, as shown in Fig. 15.10f. In this
method the mount is made with a thin spinning shoulder which pro-
trudes past the edge of the lens (which is preferably beveled). This
spinning shoulder is a few thousandths of an inch thick at the outside
edge and has an included angle of 10 or 20°. The lens is inserted and
the thin lip is turned over, usually by rotating the cell while the lip is
bent over. Care and skill are required, but there are a number of
advantages to this technique. The pressure of the spinning shoulder
tends to center the lens in the mount. In assemblies requiring extreme
precision, the seat can be bored to fit the lens diameter and the lens
can be spun in place without removing the piece from the lathe; the
result is concentricity of an order which is difficult to duplicate by any
other means.

Another technique which results in both economy and precision is to
cement the lens into its seat. The cement has a modest centering
action, and with a good plastic cement the lens is securely retained.
Care should be taken to provide an overflow groove (Fig. 15.10g) so
that excess cement is kept away from the surface of the lens.

For optics which must withstand a difficult thermal and/or vibration
environment, a useful form of mount is achieved by making the inside
diameter of the cell oversize and cementing the element in place with
a compliant, elastomeric RTV type of cement. The lens is trued in the
mount before it is cemented in place. This technique is especially use-
ful for large-diameter elements where the thermal expansion differ-
ence between the element and the mount is a serious problem; the
layer of RTV between the element and the cell is made thick enough
to take up the expansion difference.

In an assembly where several lenses and spacers are retained by a
single lock ring, care must be taken that the thickness tolerances on
the lenses and spacers are not allowed to build up to a point where the
outside lens (1) extends beyond its seat and is not constrained by the
seat diameter, or (2) is down into the mount so far that the lock ring
cannot seat down on it. Another point to watch is that the mouth of a
long inside-diameter bore is frequently bell-shaped, and a lens located
near the mouth may have several thousandths of an inch more lateral
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(diametral) freedom than intended. In critical assemblies, it frequent-
ly pays to locate the lens well inside the mouth of the bore.

When elements of different diameters are to be mounted together,
the mount can be designed so that the lens seats can all be bored in
one operation. This not only tends to reduce the cost of the mount but
eliminates a possible source of decentration of each element with
respect to the others, which can occur when the lens seats are bored in
two or more separate operations.

The microscope style of element mounting shown in Fig. 15.11 illus-
trates a number of valuable devices. The lens seat and the outside sup-
port diameter of each cell can be turned in the same operation; indeed,
in a critical system, the optical element may be spun in place without
removing the piece from the lathe. (Cementing the lenses in place can
be substituted for spinning.) All the cells are seated in the same bore
of the main mount and they are isolated from the lock-ring threads
(not shown) by a long spacer. All these techniques contribute to main-
taining the exquisite concentricity necessary in a first-class micro-
scope objective.

In mounting any type of optical element, it is important to avoid any
warping or twisting. In the case of lens elements (which are in effect
clamped between a shoulder and a lock ring, or their equivalents), this
is not too difficult, since the pressure points are opposite each other
and result in compression of the lens. More care is necessary in mount-
ing mirrors and prisms, however, since it is quite easy to make the
mistake of restraining a mirror in such a way that its surface is
warped out of shape. One way to avoid this is to be sure that for each
point at which pressure is exerted, there is a pad directly opposite so
that no twisting moment is introduced.

Figure 15.12 serves as an indication of how few constraints are nec-
essary to kinematically define the location of a piece. This illustration
might apply to a piece of cubical shape. The three points in the XZ
plane define a plane on which the lower face of the piece rests; these
points take up one translational and two rotational degrees of free-
dom. The two points in the YZ plane take up one translation and one
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rotational freedom. Note that if there were three nonaligned points in
this plane, they would then define an angle between the XZ and YZ
faces of the piece; if the piece had a different angle, then there would
be two ways in which the piece could be seated. The single point in the
XY plane eliminates the last remaining of the six available degrees of
freedom. A flexible pressure on the near corner of the piece will now
uniquely locate the piece in this mount.

The sketch on the right illustrates one way of putting this type of
mount into practice. The points are replaced by pads or rails. As
shown, the two rails in the XZ plane must be carefully machined in the
same operation to assure that they are exactly coplanar: this is not dif-
ficult, but if it were, the substitution of a short pad for one rail would
eliminate any difficulty on this score.

Prisms and mirrors are usually clamped or bonded to their mounts.
In clamp mounts the pressure is usually exerted by a screw on a met-
al pressure pad. A piece of cork or compressible composition material
is placed between the glass and the metal pad to distribute the pres-
sure evenly over the glass; this prevents the pressure from being exert-
ed at a single point. There are a number of excellent cements available
for bonding glass pieces to metal mounts. Some care is necessary in
designing the mount when bonding a thin mirror, since the cement
may warp the mirror (toward the shape of the mount) if the cemented
area is large.

15.4 Optical Laboratory Practice

The lens bench. An optical bench or lens bench consists, in essence, of
a collimator which produces an infinitely distant image of a test target,
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Figure 15.12 Kinematic and semikinematic position defining mount for a rectangular
piece.



a device for holding the optical system under test, a microscope for the
examination of the image formed by the system, and a means for sup-
porting these components. Each of the components may take various
forms, depending on the usage for which it is primarily designed.

The collimator consists of a well-corrected objective and an illumi-
nated target at the focus of the objective. For visual work, the objective
is usually a well-corrected achromat; for infrared work, a paraboloidal
mirror is used, usually in an “off-axis” or Herschel configuration. The
target may be a simple pinhole (for star tests or energy distribution
studies), a resolution target, or a calibrated scale if a “focal” collimator
is desired.

The lens holder can range in complexity from a simple platform with
wax to stick the lens in place to a T-bar nodal slide which generates a
flat image surface. The microscope is usually equipped with at least
one micrometer slide, and frequently with two or three orthogonal
slides so that accurate measurements may be made.

In subsequent paragraphs, we will discuss some of the applications
of the lens bench and will describe the components of the bench more
fully in the context of their applications.

The measurement of focal length. There are two basic lens bench tech-
niques for the routine measurement of effective focal length: the nodal
slide method and the focal collimator. Both schemes are sketched in
Fig. 15.13.

The nodal slide is a pivoted lens holder equipped with a slide which
allows the lens to be shifted axially (i.e., longitudinally) with respect
to the pivotal axis. Thus, by moving the lens forward or backward, the
lens can be made to rotate about any desired point. Now note that, if
the lens is pivoted about its second nodal point (as indicated in Fig.
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Figure 15.13 Illustrating the nodal slide (upper) and the focal collimator
(lower) methods of measuring focal length on the optical bench.



15.13), the ray emerging from this point (which by definition emerges
from the system parallel to its incoming direction) will coincide with
the bench axis (through the nodal point). Thus there will be no lateral
motion of the image when the lens is rotated about the second nodal
point. Once the nodal point has been located in this manner, the lens
is then realigned with the collimator axis and the location of the focal
point is determined. Since the nodal points and principal points are
coincident when a lens is in air, the distance from the nodal point to
the focal point is the effective focal length.

This technique is basic and applicable to a wide variety of systems.
Its limitations are primarily in the location of the nodal point. The
operation of swinging the lens, shifting its position, swinging again,
and so on, is tedious, and since it is discontinuous, it is difficult to
make an exact setting. If the axis of the test lens is not accurately cen-
tered over the axis of rotation of the nodal slide, there will be no posi-
tion at which the image stands still. Lastly, the measurement of the
distance from the axis of rotation to the position of the aerial image is
subject to error unless the equipment is carefully calibrated.

A focal collimator consists of an objective with a calibrated reticle at
its focal point. The focal length of the objective and the size of the ret-
icle must be accurately known. The test lens is set up and the size of
the image formed by the lens is accurately measured with the mea-
suring microscope. From Fig. 15.13 it is apparent that the focal length
of the test lens is given by

Fx � A′ � � (15.10)

where A′ is the measured size of the image, A is the size of the reticle,
and F0 is the focal length of the collimator objective. Note that the focal
collimator may be used to measure negative focal lengths as well as
positive; one simply uses a microscope objective with a working dis-
tance longer than the (negative) back focus of the lens under test.

It is apparent from Eq. 15.10 that any inaccuracies in the values of
A′, A, or F0 are reflected directly in the resultant value of the focal
length. Further, any error in setting the longitudinal position of the
measuring microscope at the focus will be reflected in Fx. Note that
both the nodal slide and focal collimator methods assume that the test
lens is free of distortion. If an appreciable amount of distortion exists,
the measurements must be made over a small angle; this, of course,
will limit the accuracy possible.

In setting up a focal collimator, it is necessary to determine the colli-
mator constant (F0/A) to as high a degree of accuracy as possible. The
value of A, the reticle spacing, can be readily measured with a measur-
ing microscope. The focal length of the collimating lens can be deter-

F0�
A
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mined to a high degree of accuracy by a finite conjugate version of the
focal collimator technique. An accurate scale (or glass plate with a pair
of lines) is set up 20 to 50 ft from the collimator lens, as shown in Fig.
15.14. The measuring microscope is used to measure the size of the
image of the target accurately, and the distance from object to image is
measured. The value of p, the distance between the principal points is
estimated, either from the design data of the lens or by assuming it to
be about one-third the lens (glass) thickness. (As long as p is small com-
pared to D, the error introduced by an inaccurate value of p is small.)
Now since D � s � s′ � p and A:s � A′:s′, s and s′ can be determined and
substituted (with due regard for the sign convention) into

� � (15.11)

and the value of the effective focal length determined. The necessity of
estimating a value for p can be eliminated, if desired, by measuring
the front focal length and applying the newtonian equation for magni-
fication (Eq. 2.6) or, alternatively, by measuring front and back focal
lengths (as outlined in the next paragraph), determining p � ffl � bfl
� t � 2f, and repeating the original calculation; after a few iterations
the calculation will converge to the exact p and f.

Collimation and the measurement of front and back focal lengths. A basic
method of locating the focal points is by autocollimation. As indicated
in Fig. 15.15, an illuminated target is placed near the focus of the lens

1
�
s

1
�
f

1
�
s′
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Figure 15.14 Setup for basic measurement of focal length.

Figure 15.15 Autocollimation as
a method of locating the focal
points. When the object and
reflected image are in the same
plane (the focal plane), the sys-
tem is autocollimated.



under test and a plane mirror is placed in front of the lens so as to
reflect the light back into the lens. When the reflected image is focused
on a screen in the same plane as the target, both screen and target lie
in the focal plane. For accurate work an autocollimating microscope,
shown in Fig. 15.16, produces excellent results. The lamp and con-
denser illuminate the reticle, which may consist of clear lines scribed
through an aluminized mirror. The reticle is then imaged at the 
focus of the microscope objective. The eyepiece of the microscope is
positioned so that its focal plane is exactly conjugate with the reticle.
Thus when the microscope is focused on the focal plane of the test lens,
the reticle image is autocollimated by the test lens-plane mirror com-
bination and is seen in sharp focus at the eyepiece. The microscope is
then moved in to focus on the rear surface of the test lens; the distance
traveled by the microscope is equal to the back focus of the lens.

The lens bench collimator itself may be adjusted for exact collima-
tion using this technique. When the collimator reticle and the reflect-
ed image of the microscope reticle are simultaneously in focus, then
the collimator is in exact adjustment. Note that the mirror must be a
precise plano surface if accurate results are expected.

For routine measurements of back focus the bench collimator is sub-
stituted for the plane mirror, and if no autocollimating microscope is
available, a little powder or a grease pencil mark on the rear surface
of the test lens can be used as an aid in focusing on the lens surface.

In the absence of many of the usual laboratory trappings, it is still
possible to make reasonably accurate determinations of focal lengths
and focal points. A lens may be collimated simply enough by focusing
it on a distant object. The error in collimation can be determined by
the newtonian equation x′ � �f 2/x, where x is the object distance less
one focal length and x′ is the error in the determination of the focal
position. A set of distant targets, such as building edges, smokestacks,
and the like, whose angular separations are accurately known can
often be substituted for a focal collimator in determining focal lengths.
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Figure 15.16 The autocollimating microscope is used to
measure back focal length by focusing first on the surface
of the test lens and then on the autocollimated image at
the focal point.



Measurement of telescopic power. The power of a telescopic system can
be measured in three different ways. If the focal lengths of the objec-
tive and eyepiece (including any erectors) can be measured, their quo-
tient equals the magnification. The ratio of the diameters of the
entrance and exit pupils will also yield the magnifying power.
Occasionally the multiplicity of stops in a telescope will introduce
some confusion as to whether the pupils measured are indeed conju-
gates; in this case the image of a transparent scale laid across the
objective can be measured at (or near) the exit pupil to determine the
ratio. When the field of view is sharply defined, the magnification can
be determined by taking the ratio of the tangents of the half-field
angles at the eyepiece and the objective. Note that the almost
inevitable distortion in telescopic eyepieces will usually cause this
measurement of power to differ from measurements made by focal
lengths or pupil diameters. One should ascertain that the telescope is
in afocal adjustment before measuring the power. One way of doing
this is to use a low-power (3 to 5�) auxiliary telescope (or dioptometer)
previously focused for infinity at the eyepiece; this reduces the effect
of visual accommodation when the focus is adjusted.

The measurement of aberrations. In most instances the aberrations of a
test lens can be readily measured on the lens bench by simulating a
raytrace. For the measurement of spherical or chromatic aberration, a
series of masks, each with a pair of small (to the order of a millimeter
in diameter) holes, is useful. As indicated in Fig. 15.17, such a mask,
centered over the test lens, simulates the passage of two “rays.” When
the image is examined with a microscope, a double image of the target
is seen, except when the microscope is focused at the intersection of
the two rays. By measuring the relative longitudinal position of the
ray intersections for masks of various hole spacings, the spherical
aberration can be determined. If the measurements are made in red
and blue light, the data will yield the chromatic and spherochromatic
aberration of the lens.

Figure 15.18 indicates how a similar three-hole mask can be used to
measure the tangential coma of a test lens. A multiple hole mask can
also be used to measure and plot a ray intercept curve, if desired. The
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Figure 15.17 A two-hole mask
can be used to locate the focus of
a particular zone of a lens to
determine the spherical aberra-
tion.



technique for measurement of field curvature is indicated in Fig.
15.19. The bench collimator is equipped with a reticle consisting of
horizontal and vertical lines. The focal length of the test lens is mea-
sured. The lens is then adjusted so that its second nodal point is over
the center of rotation of the nodal slide and the position of the focal
point (with the lens axis parallel to the bench axis) is noted. The lens
is then rotated through some angle �. From Fig. 15.19 it is apparent
that the intersection of the (flat) focal plane of the lens with the bench
axis will shift away from the lens by an amount equal to

efl � � 1�
as the lens is pivoted through an angle �. The bench microscope is used
to measure D, the amount by which the focus shifts along the axis. Two
measurements are necessary, one for the sagittal focus and one for the
tangential focus; this is the reason for the orthogonal line pattern of
the reticle. Now the departure (along the bench axis) of the image sur-
face from a flat plane is equal to

D�efl � � 1�
and the curvature of field (parallel to the lens axis) is given by

x � cos � �D � efl � � 1��
Much of the numerical work in determining the field curvature by

this method can be eliminated by the use of a T-bar attachment to the
nodal slide. The cross bar of the T acts as a guide for the bench micro-
scope, causing it to focus on the flat field position as the lens is pivot-
ed. Thus one may measure the value of x/cos � directly; the use of the
T-bar eliminates several sources of potential errors inherent in the
method described above, although it does complicate the construction
of the nodal slide. Measure at ±� to detect a tilted field.

Distortion is a difficult aberration to measure. The nodal slide may
be used. The lens is adjusted on the slide so that no lateral image shift

1
�
cos �

1
�
cos �

1
�
cos �
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Figure 15.18 A three-hole mask
can be used to measure the coma
of a test lens.



is produced by a small rotation of the lens. Then as the lens is pivoted
through larger angles, any lateral displacement of the image is a mea-
sure of the distortion. An alternate method is to use the lens to project
a rectilinear target and to measure the sag or curvature of the lines in
the image, or to measure the magnification of targets of several differ-
ent angular sizes. The difficulty with any method of measuring distor-
tion is that one invariably winds up basing the work on measurements
of magnification (or whatever) vanishingly close to the axis, and the
accuracy of such small measurements is usually quite low.

The star test. If the object imaged by a lens is effectively a “point,” i.e.,
if its nominal image size is smaller than the Airy disk, then the image
will be a very close approximation to the diffraction pattern. A micro-
scopic examination of such a “star” image can indicate a great deal
about the lens to the experienced observer. One should be sure that the
microscope NA is larger than that of the lens being tested. On the axis,
the star image of a perfectly symmetrical (about the axis) system obvi-
ously must be a symmetrical pattern. Therefore, any asymmetry in the
on-axis pattern is an indication of a lack of symmetry in the system. A
flared or coma-shaped pattern on axis generally indicates a decentered
or tilted element in the system. If the axial pattern is cruciform or
shows indications of a dual focus, the cause may be axial astigmatism
due either to a toroidal surface, a tilted or decentered element, or an
index inhomogeneity.

The axial pattern may also be used to determine the state of correc-
tion of spherical and chromatic aberration. The outer rings in the dif-
fraction pattern of a well-corrected lens are relatively inconspicuous,
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Figure 15.19 Geometry of the measurement of field curvature using
the lens bench nodal slide.



and the pattern, when defocused, looks the same both inside and out-
side the best focus point. In the presence of undercorrected spherical,
the pattern will show rings inside the focus and will be blurred outside
the focus; the reverse is true of overcorrected spherical. When the
spherical aberration is a zonal residual, the ring pattern tends to be
heavier and more pronounced than that from simple under- or over-
corrected spherical.

In the case of undercorrected chromatic, the pattern inside the focus
will have a blue center and a red or orange outer flare. As the micro-
scope focus is moved away from the lens, the center of the pattern may
turn green, yellow, orange, and will finally become red with a blue
halo. The reverse sequence will result from overcorrected chromatic. A
chromatically “corrected” lens with a residual secondary spectrum
usually shows a pattern with a characteristic yellow-green (apple
green) center surrounded by a blue or purple halo.

Off-axis star patterns are subject to a much wider range of varia-
tions. The classical comet-shaped coma pattern is easily recognized, as
is the cross- or onion-shaped pattern due to astigmatism. However, it
is rare to find a system with a “pure” pattern off-axis, and it is much
more common to encounter a complex mixture of all the aberrations,
which are difficult, if not impossible, to sort out.

The star test is a very useful diagnostic tool requiring only minimal
equipment, and, in skilled hands, it can be highly effective. The novice
should be warned, however, that reliable judgments of relative quality
are difficult, and a considerable amount of experience is necessary
before one can safely depend on a star check for even simple compara-
tive evaluations. It should not be used for quality control acceptance
tests.

The Foucault test. The Foucault, or knife-edge, test is performed by
moving a knife (or razor-blade) edge laterally into the image of a small
point (or line) source. The eye, or a camera, is placed immediately
behind the knife, and the exit pupil of the system is observed. The
arrangement of the Foucault test is shown in Fig. 15.20. If the lens is
perfect and the knife is slightly ahead of the focus, a straight shadow
will move across the exit pupil in the same direction as the knife.
When the knife is behind the focus, the direction of the shadow move-
ment is the reverse of the knife direction. When the knife passes exact-
ly through the focus, the entire pupil (of a perfect lens) is seen to
darken uniformly.

The same type of analysis can be applied to zones of the pupil. If 
a zone or ring of the pupil darkens suddenly and uniformly as the
knife is advanced into the beam, then the knife is cutting the axis at 
the focus of that particular zone. This is the basis of most of the
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quantitative measurements made with the Foucault test. The tech-
nique generally used is to place a mask over the lens with two sym-
metrically located apertures to define the zone to be measured. The
knife is shifted longitudinally until it cuts off the light through both
apertures simultaneously. It is then located at the focus for the zone
defined by the mask. The process is repeated for other zones, and 
the measured positions of the knife are compared with the desired
positions.

This test is extremely useful in the manufacture of large concave
mirrors, which can be tested either at their focus or at their center of
curvature. For the center-of-curvature test, the source is a pinhole
closely adjacent to the knife (Fig. 15.21), and a minimum of space and
equipment is required. Obviously if the mirror is a sphere, all zones
will have the same focus, and a perfect sphere will darken uniformly
as the knife passes through the focus. When the surface to be tested is
an aspheric, the desired foci for the various zones are computed from
the design data and the measurements are compared with the calcu-
lated values. It is a relatively simple matter to convert these focus dif-
ferences into errors in the surface contour; in this way the optician can
determine which zones of the lens or mirror require further polishing
to lower the surface.

If the aspheric surface equation is expressed in the form
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Figure 15.20 The Foucault knife-edge test. Upper: On a perfect lens the
knife shadow has a straight edge. Lower: The shadow has a curved
edge in the presence of spherical aberration. When the knife cuts
through the focus, the pupil (or the zone of the focus) darkens uni-
formly.



x � f(y)

then the equation of the normal to the surface at point (x1, y1) is

y � y1 � f(y1) f ′(y1) � xf ′(y1)

[where f ′( ) � dx/dy], and the intersection of the normal with the (opti-
cal) axis is then

x0 � x1 �

As an example, for a paraboloid represented by

x �

f ′(y) � �

and the axial intersection of the normal through the point (x1, y1) is

x0 � x1 � � x1 � 2f � � 2f

This last equation gives the longitudinal position at which the knife
edge should uniformly darken a ring of semidiameter y1, when a
parabola is tested at the center of curvature (as in Fig. 15.21) and
knife and source are simultaneously moved along the axis.

In practice, the knife edge is adjusted longitudinally until the cen-
tral zone of the mirror darkens uniformly. The distance from the knife
to mirror is then equal to 2f. Then a series of measurements is made
using masks with half-spacings of y1, y2, y3, etc., each measurement
yielding an error e1, e2, e3, etc., where e is the longitudinal distance
from the “desired” position for the knife to the actual position.

These data may be readily converted into the difference between the
actual slope of the surface and the desired slope by reference to Fig.
15.22. When e is small, we can (to a very good approximation) write for
our parabolic example

y1
2

�
4f

y1�
(y1/2f)

y
�
2f

dx
�
dy

y2

�
4f

y1�
f ′( y1)

590 Chapter Fifteen

Figure 15.21 The knife-edge test
applied to a concave mirror by
placing both knife and source at
the center of curvature.



�

where the term in the right-hand denominator is the distance from the
surface to the axis taken along the normal. Now the angle � between
the actual normal and the desired normal is equal to

� �

and substituting for A from the previous expression, we get

� �

Note that � is also the amount by which the slope of the surface is
in error; we can determine the actual departure of the surface from its
desired shape by reference to Fig. 15.23. Taking the surface error at
the axis as zero, the departure from the desired curve at y1 is given by

d1 �

At y2 it is

d2 � d1 � (y2 � y1) (�1 � �2)

At y3 it is

d3 � d2 � (y3 � y2) (�2 � �3)

In general we can write

dn � 
i � n

i � 1
(yi�1 � yi) (�i�1 � �i)
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Figure 15.22 Geometry of knife-
edge test used to determine the
surface contour of a concave
(paraboloidal) mirror.



where y0 and �0 are assumed zero, and the sign of d is positive if the
actual surface is above (to the right in Figs. 15.22 and 15.23) the
desired surface.

The method outlined above can be readily applied to any concave
aspheric. Since it checks the aspheric only at discrete intervals, it must,
of course, be supplemented with an overall knife-edge check to be certain
that the surface contour is smooth and free from ridges or grooves. The
testing of convex surfaces is more difficult; they are usually checked in
conjunction with another mirror chosen so that the combination has an
accessible “center focus.” The computation of the normal is more involved
in this case, but the principles involved are exactly the same.

The Schlieren test. The Schlieren test is actually a modification of the
Foucault test in which the knife blade is replaced by a small pinhole.
Thus any ray which misses the pinhole causes a darkened region in
the aperture of the optical system. The Schlieren test is especially use-
ful in detecting small variations in index of refraction, either in the
optical system or in the medium (air) surrounding it. In wind-tunnel
applications, the tunnel is set up between a collimating optical system
and a matching system which focuses the image on the pinhole. When
the test is recorded photographically, it is possible to derive quantita-
tive data on the airflow from density measurements on the film.

Resolution tests. Resolution is usually measured by examining the
image of a pattern of alternating bright and dark lines or bars.
Conventionally, the bright and dark bars are of equal width. A target
consisting of several sets of bar patterns of graded spacing is used, and
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Figure 15.23 Conversion of mea-
sured errors of surface slope (�)
into the departure (d) of the
actual surface from the desired
surface.



the finest pattern in which the bars can be distinguished (and in which
the number of bars in the image is equal to the number in the object)
is taken as the limiting resolution of the system under test.

The resolution patterns in use vary in two details of (relatively minor)
significance: the number of lines or bars per pattern and the length of the
lines relative to their width. The most common practice is to use three
bars (and two spaces) per pattern, with a length of five, or more, bar
widths. The USAF 1951 target is of this type and the patterns are grad-
ed in frequency with a ratio of the sixth root of 2 between patterns. The
National Bureau of Standards Circular No. 533 includes both high-
(25:1) and low- (1.6:1) contrast three-bar patterns which are approxi-
mately 1-in long and range in frequency from about one-third line per
millimeter to about three lines per millimeter in steps of the fourth root
of 2. A number of transparent (on film or glass) targets are commercial-
ly available; these are, for the most part, based on the USAF target.

Figure 15.24 shows two types of resolution test targets. The USAF
1951 target is probably the most widely used and accepted resolution
target. The radial target is interesting since it nicely demonstrates the
180° phase shift of the optical transfer function. This produces the
“spurious resolution” which is illustrated in Fig. 15.24c. See also Figs.
11.16 and 11.17.

In evaluating the resolution of a system it is important to adopt a
rational criterion for deciding when a pattern is “resolved.” The fol-
lowing is strongly recommended: A pattern is resolved when the lines
can be discerned, and when all coarser (lower-frequency) patterns also
meet this requirement. This implicitly requires that the number of
lines in the image be the same as in the target, and also rules out spu-
rious resolution. Do not allow any consideration of “sharpness,” “defi-
nition,” “crispness,” “clearly resolved,” “contrast,” or the like to enter
the evaluation; these are all subjective and involve individual inter-
pretation. They lead to interminable arguments. The only considera-
tion that should be used is “Can you discern the lines?”
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Figure 15.24 (a) USAF1951 resolution chart; (b) Siemens star resolution chart; (c)
defocusing a well-corrected lens can cause a 180° phase shift which reverses the con-
trast of the pattern, causing areas which should be dark to be light and vice versa.



The resolution of a photographic system is tested by photographing
a suitable target and examining the film under a microscope. In order
to obtain optimum results, the photographic processes must be carried
out with extreme care, especially with regard to the selection of the
best focus, exposure and development, and the elimination of any
vibration in the system. If the microscope used in examination of the
test film has a power approximately equal to the number of lines per
millimeter in the pattern, the visual image will have a frequency equal
to one line per millimeter and will be easy to view.

Objective lenses can be tested on an optical bench with a resolution
target in the collimator. For lenses with an appreciable angular cover-
age, an accurate T-bar nodal slide is practically a necessity if reliable off-
axis results are to be obtained. Projection of a resolution target is a very
convenient means of checking the resolution of lenses designed to cover
areas less than a few inches in size. Care must be taken to ensure that
the illumination system of the projector completely fills the aperture of
the lens under test; otherwise, the results may be misleading. In all res-
olution tests, the alignment of the lens axis perpendicular to the target
and film planes is a critical factor. The resolution of telescopic systems
can be checked by visual observation of a suitably distant or collimated
target. Since the limiting resolution of a telescope is frequently (by
design) close to the limiting resolution of the eye, a common practice is
to view the image through a low-power auxiliary telescope. Such a tele-
scope serves a dual purpose in that it reduces the effect of the observer’s
visual acuity on the measurement and also reduces the effect that invol-
untary accommodation (focusing) can have.

The classical criterion for resolution, namely, the ability of a system
to separate two point sources of equal intensity, is seldom used (except
in astronomy). This is largely because a test using line objects is much
easier to make.

Measurement of the modulation transfer function. The measurement of
the MTF (frequency response) is, in principle, quite straightforward.
The basic elements of the equipment are shown in Fig. 15.25. The test
pattern is one in which the brightness varies as a sinusoidal function
of one dimension. Such a target is not an easy thing to prepare; fortu-
nately the errors introduced by a target which is not truly sinusoidal
are unimportant for most purposes. Some instruments utilize “square-
wave” targets. The target pattern is imaged by the test lens on a nar-
row slit whose direction is exactly parallel to the target pattern. The
light passing through the slit is measured by a photodetector.

As the target or the slit is shifted laterally, the amount of light
falling on the detector will vary, and the image modulation is given by
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Mi �

where max and min represent the maximum and minimum illumina-
tion on the photodetector. The object modulation M0 is similarly
derived from the maximum and minimum brightness levels of the tar-
get. The MTF (or frequency response, or sine-wave response, or con-
trast transfer) is then the ratio Mi : M0.

A provision is usually made to vary the spatial frequency of the tar-
get pattern so that the response may be plotted against frequency. The
target portion of the system may be as simple as a set of interchange-
able targets which are slowly traversed by hand, or it may be a fully
automatic device which translates the target and scans a range of fre-
quencies simultaneously.

The image-plane slit is almost never just a slit, since the manufac-
ture of a slit of the required narrow dimensions can be fairly difficult.
Instead, the image is magnified by a first-class microscope objective;
this allows the use of a wider slit.

Obviously any real slit width will have some effect on the measure-
ments, and a slit as narrow as the sensitivity of the photodetector will
allow should be used. The effect of the slit width on the response may
be readily calculated, since it simply represents a line spread function
of rectangular cross section, and the data can be adjusted accordingly
where necessary.

max � min
��
max � min
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Figure 15.25 The basic elements of modulation transfer (fre-
quency response) measurement equipment. The motion of the
target scans its image across the narrow slit, where the maxi-
mum and minimum illumination levels are measured. By using
targets of different spatial frequency, a plot of the modulation
transfer function (vs. frequency) can be obtained.



The source of illumination and the spectral response of the photode-
tector must, of course, be matched to the application for which the sys-
tem under test is to be used. Otherwise, serious errors in
measurement will result from the unwanted radiation outside the
spectral band for which the system has been designed. Usually a set of
filters can be found which will provide the proper response.

Another technique which is much more widely used than that
described above is based on a knife-edge scan. A knife edge is passed
through the image of a point (or slit) and the light passing by the edge
is measured. If the measured light I is plotted against the lateral posi-
tion of the knife edge y, the slope of the curve (dI/dy) is exactly equal
to the line spread function of the lens. The MTF can be calculated from
the line spread function using the methods outlined in Secs. 11.8 and
11.9. Most commercial MTF equipment is set up so that the knife-edge
scan data are read directly into a computer which processes the data
to calculate the MTF at whatever frequency is desired. Note that this
technique does not require a sinusoidal target, nor does it require a
separate target for each frequency. As in any MTF measurement, the
spectral distribution of the source and the response of the light-mea-
surement sensor must match that of the application.

The wave-front shape as measured by an interferometer can also be
used to determine the MTF. The fringe pattern is scanned to digitize
the data, and it is computer-processed to calculate the MTF at any
desired frequency as in the knife-edge scan. This is entirely adequate
for mirror systems or systems which operate at the laser wavelength.
For systems which utilize a finite-width spectral band or a different
wavelength, the results are not correct.

The analysis of “unknown” optics. It is frequently necessary to deter-
mine the constructional parameters of an existing optical system. An
example might be the analysis of a sample system to determine the
reason for its failure to perform to the designer’s expectations. Another
example might be the analysis of an existing lens so that its design
data can be used as the starting point for a new design. For the most
part this amounts to the measurement of the radii, thicknesses, spac-
ings, and indices of the system components.

Since the measurements to be made are frequently of a precision
barely adequate for the purpose, it is best to provide as many interde-
pendent checks on the process as possible. Thus the first steps should
include accurate measurements of effective, back, and front focal
lengths, as well as the aberrations, so that when all of the measured
system data are collected, a calculation of the complete (measured)
system can provide a final comparison check on the overall accuracy of
the analysis.
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The thicknesses and spacings of a system are readily measured. For
small systems a micrometer (equipped with ball tips for concave sur-
faces) is sufficient. A depth gage or an oversize plunger caliper (Nonius
gage) is useful for larger systems. If a dimension can be deduced from
two different measurements (as a check), the extra time involved is
usually a worthwhile investment.

The radius of an optical surface can be measured in many ways. The
simplest is probably by use of a thin templet, or “brass gage,” cut to a
known radius and pressed into contact with the surface. Differences
between the gage and glass of a few ten-thousandths of an inch can
easily be detected this way, but such a gage is not useful unless it very
nearly matches the surface.

The classical instrument for radius measurement is the spherome-
ter, the basic principles of which are outlined in Fig. 15.26. The spher-
ometer measures the sagittal height of the surface over a known
diameter; the radius is determined from the formula

R �

where Y is the semidiameter of the spherometer ring and S is the mea-
sured sagittal height. Since the sagittal height is a rather small
dimension and thus subject to relatively large measurement errors,
the accuracy of a spherometer leaves something to be desired even
when extreme precautions are taken. One of the best ways to use a
spherometer is as a comparison device, by measuring both the
unknown radius and a (nearly equal) carefully calibrated standard
radius (e.g., a test glass).

Y 2 � S 2

��
2S
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Figure 15.26 Left: Simple ring spherometer deter-
mines the radius of a surface through a measure-
ment of the sagittal height. Right: The diopter gage
or lens measure is a spherometer calibrated to read
surface curvature in diopters.



The diopter gage, or lens measure, or Geneva lens gage is a handy
tool which can provide a quick approximate measure of the surface
curvature. As shown in Fig. 15.26, it consists of a dial gage with its
plunger between two fixed points. The dial of a diopter gage is cali-
brated in diopters; the readings may be converted to radii by the 
formula

R � millimeters

where the 525 is the constant representing 1000 (N � 1) for an “aver-
age” opthalmic glass. The accuracy of a typical diopter gage is to the
order of 0.1 diopter.

Probably the best way to measure a concave radius is by use of an
autocollimating microscope. The microscope is first focused on the sur-
face and is then focused at the center of curvature (where the micro-
scope reticle image is imaged back on itself by reflection from the
surface). The distance traveled by the microscope between these two
positions is equal to the radius. The precision of this method can be to
the order of micrometers; the accuracy is obviously dependent on the
accuracy of the measurement method used. If the microscope used is
of fairly high power (say 150� with NA � 0.3), the quality of the
reflected image at the center of curvature is an excellent indication of
the sphericity of the surface. Convex surfaces can be measured in this
way provided that the working distance of the microscope objective is
longer than the radius. A series of long-focal-length objectives is useful
in this regard, although the precision of the method drops as the NA
of the objective is lowered (long-focal-length objectives usually have a
small NA) due to the increased depth of focus. If a precise determina-
tion of a long convex radius is necessary, a mating concave surface can
be made so that it fits perfectly (as tested by interference rings) and
the measurement is made on the concave glass. Master test plates are
measured by this technique. Note that Eq. 15.3 can be used to calcu-
late small radius differences from interference fringe readings.

If a separate piece of glass from which the lens under analysis was
made is available, the measurement of its index can be made with con-
siderable precision. The minimum deviation of a test prism may be
measured on a laboratory spectrometer, and the prism equations of
Chap. 4 used to find the index. Alternatively, a Pulfrich refractometer
measurement can be made. Either method will readily yield the index
value accurate to the fourth decimal place. When one is constrained to
measure the lens element itself, without destroying it, the problem is
more difficult. A crude determination of the index can be made for nor-
mal glasses (i.e., not the newer “light” glasses) by measuring the den-
sity of the element. A plot of the catalog values of the index against
density is then used to determine (very approximately) the corre-

525
�

D
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sponding index. The relationship between index (n) and density (D) is
very approximately n � (11 � D)/9.

A somewhat more general method is to measure the axial thickness
of the element and then to measure the apparent optical thickness by
focusing a measuring autoreflecting microscope first on one surface
and then the other. A simple paraxial calculation, taking into account
the refractive properties of the surface radius through which the sec-
ond surface is viewed, will yield a value for the index. Depending on
the thickness of the element, the index value achieved will probably be
almost completely unreliable in the third place, due to the large rela-
tive inaccuracy in the measurement of the apparent thickness and to
the spherical aberration introduced by the thickness of the glass.

If one measures the radii carefully and makes a good determination
of the paraxial focal length of the element, the thick-lens formula for
focal length can be solved to determine the index of refraction.
Although this method requires skilled laboratory technique, it is capa-
ble of producing results which are accurate to one or two digits in the
third place. Note that if care is not taken to eliminate the effects of
spherical aberration from the focal-length measurement, the resulting
index value will tend to err on the high side. Another nondestructive
technique involves immersion in index-matching liquids, then mea-
suring the index of the liquid.
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Index

Abbe prisms, 110–111
Abbe sine condition, 323
Abbe V- number, 94, 178
Aberrations, 61–62

astigmatism and field curvature, 69–71
(See also Astigmatism)

balancing, 430–431
chromatic, 72–73 

(See also Chromatic aberration)
coma, 67–69 

(See also Coma aberration)
correction of, 80–83, 426–428
distortion, 71–72 

(See also Distortion)
lens shape and stop position effect on, 

73–77
measurement of, 66–67, 585–587
optical computations for, 321–327
optical path difference, 79–80 

(See also Optical path difference (OPD))
point spread functions for, 385–391
and ray intercept curves, 83–89
residual, 80–83, 429–430, 462
Seidel, 62–72
spherical, 64–67 

(See also Spherical aberration)
third-order (see Third-order aberrations)
tolerances for, 355–359
variation with aperture and field, 77–79
zonal (see Zonal aberrations)

Absorption, 173–178, 287
Absorption filters, 192–195
Acceptance cones, 282
Accommodation, 126, 131
Achromatic doublets, 412
Achromatic prisms, 94–96
Achromatic singlets, 415–417
Achromatic telescope objectives:

design forms, 404–413
thin-lens theory for, 402–404

Additive tolerances, 570–575
Aerial image modulation (AIM) curves, 

366–367
Afocal attachments, 470
Afocal systems, 251–255
Airspaced achromats, 408–409, 411
Airspaced anastigmats, 459–464
Airspaced triplets, 342–345, 506
Airy disks, 159
Alignment telescopes, 446
Alternate lenses in zoom systems, 295
Amici objective, 450–451
Amici prisms, 107–108
Anamorphic systems, 287–291
Angles:

of diffraction, 382
of incidence, 7–8
of prisms, 95, 567–568
of refraction, 7–8
subtended, 251, 253, 268

Angstroms, 2–3
Angular aberrations, 66, 79
Angular blur, 154
Angular depth of focus, 155–156
Angular dispersion, 92
Angular field of view, 143, 253
Angular motion detection, 131
Angular resolution limits, 162
Angulon design, 470
Aniseikonina, 138
Antireflection coatings, 204
Apertures, 141–142

aberration effects of, 73–79
diffraction effects of, 157–160
in Galilean telescopes, 262
and image illumination, 151–154
in meniscus anastigmats, 454
in meniscus camera lens, 395, 

397–399
and optical invariant, 54

603



Apertures (Cont.):
and pupils, 142–143
and sagittal coma, 323
and vignetting, 143–147

Aplanatic optical systems, 276
Aplanatic surfaces and fronts, 449–451
Apochromatic lenses, 411

doublets, 417–418
triplets, 505

Apodization, 380
Apparent angular field of view, 253
Apparent thickness, 29
Apparent width, 561
Aqueous humor, 126
Arc-lamp motion picture projectors, 472
Aspheric correctors, 486–487, 532, 541
Aspheric surfaces, 547

fabricating, 483–484, 557
general and skew rays on, 312–317
in meniscus camera lens, 400–401
plastic for, 190
for residual aberrations, 430
in third-order aberrations, 332–335

Astigmatism, 69–71, 76
computations for, 324
in Cooke triplets, 421
in eyes, 136
and field angle, 83
manual correction of, 427
in plane parallel plates, 103
with point spread functions, 385–386, 

389, 391
in reflecting systems, 476–477

Astronomical telescopes, 252
Athermalization, 412–413
Autocollimating microscopes, 584, 598
Automatic computer design, 394, 431–435
Aviar lenses, 462
Axial gradients, 187

Back focal length, 23
calculation of, 39–40
and optical invariant, 53
of two-component systems, 47
in zoom systems, 294

Baffles, 148–150
Baker-Nunn satellite tracking cameras, 

490
Balsam cement, 213
Bandpass filters, 207
Bang-bang zooms, 292
Bar targets, 366–367
Barium crowns and flints, 179
Barrel distortion, 72

Beaded screens, 197
Beam power, 165, 245
Beam splitter prisms, 103–104, 114–116
Beam truncation, 166
Beam waists, 165–168
Bell centering, 555
Bench collimators, 586
Binary surfaces, 296, 413
Binocular field of vision, 128
Binocular vision, lack of, 138
Binoculars, 258
Biocular systems, 444–445
Biotar objectives, 456, 459
Blackbody radiation, 231–237
Blanks, 549–550
Blind spot, 127
Blocking, 551–552
Blue optical glass filters, 193
Blur and blur sizes, 154–155

with Mangin mirrors, 487
rapid estimation of, 491–496
in reflecting systems, 476
with spherical aberrations, 364–365

Borosilicate glasses, 185
Bouwers system, 488–491
Brashear-Hastings prisms, 110–111
Brass gages, 597
Bravais system, 289
Brewster’s angle, 200
Brightness:

conservation of, 227
telescope, 247
units for, 239
in visual acuity, 129–131

Broad-band coating, 205
Broken ring test, 128

Canada balsam, 213
Cancellation of waves, 11, 14
Candle power of searchlights, 245
Candles, 239
Cardinal points, 22–24
Cassegrain systems:

benefits of, 482–483
conic sections in, 477–480
focal length in, 44–45
Schmidt, 487

Catadioptric systems, 487, 491, 533
Cataracts, 137
Cauchy dispersion equation, 176
Cemented doublets, 406–408
Cemented quadruplets, 436
Cemented triplets, 436
Cements, 213–214, 578, 580
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Center-of-curvature tests, 589
Centering, 555–556, 565–567
Central negative doublets, 521
Central obscuration, 380–381
Chief rays, 69, 142
Chromatic aberrations, 72–73, 76–77

in blur, 492
in Bouwers system, 489–490
computations for, 325–326
in condenser systems, 472
in Cooke triplets, 420, 422
in eye, 137
in eyepieces, 440
in lens design, 433
manual correction of, 427
in plane parallel plates, 103
in prisms, 103
Rayleigh limit in, 358–359
residuals in, 81–82
in Schmidt systems, 485
in symmetrical principle, 401
in telescope objectives, 402
in visual acuity, 129–130

Chromatic difference of magnification, 73
Circular polarizers, 199
Cladding in fiber optics, 283–285
Closing equations, 302–303, 305
Coatings, 201–209
Coddington’s equations, 317–321
Coherent illumination, MTF with, 380–383
Cold mirrors, 210–211
Cold stops, 147–148
Collimators, 580–584, 586
Color in Cooke triplets, 420
Color temperature in blackbody radiation,

237
Coma aberration, 67–69

computations for, 322–323
in Cooke triplets, 421
in diffractive surface design, 417
in eyepieces, 440
and field angle, 83
and lens shape, 75–77
with Mangin mirrors, 487
manual correction of, 427
in plane parallel plates, 103
with point spread functions, 385, 

388, 391
Rayleigh limit in, 358–359
in reflecting systems, 476–480
in symmetrical principle, 401
in telescope objectives, 402, 405–406

Communications, fiber optics for, 286–287
Comparison photometry, 132

Compensating eyepieces, 451
Compound microscopes, 269–271
Computer-controlled polishers, 558
Computer design, 431–435
Concave lenses, wave fronts affected by, 9
Concave radius:

in microscope objectives, 452
in unknown optics analysis, 598

Concentric Bouwers, 489, 494–496, 498
Condenser systems, 245–247, 470–474
Cone channel condensers, 279–280
Cones, 127–128
Conic sections, 313, 484–485
Conjugates, 9, 251–252
Conrady dispersion equation, 176–177
Conservation of radiance, 225–230
Constant-deviation prisms, 105, 113–114
Contact lenses, 136–137
Contrast sensitivity, 132
Contrast transfer function, 369
Convergence, 131
Convex lenses, wave fronts affected by, 9
Convex radius in microscope objectives, 

452
Cooke triplet anastigmats, 418–419

element shape solutions in, 421–422
glass choice in, 423–424
with high-index crowns, 511
initial aberration values in, 422–423
power and spacing solutions in, 419–421

Cooling process, 179
Corneas, 126
Cosine-to-the-fourth, 153–154
Cover glass in microscopes, 447
Critical angle in prisms, 96
Crown glasses, 179

in Cooke triplets, 418, 422–423, 511
in meniscus anastigmats, 457
in meniscus camera lenses, 395
in Petzval lenses, 467, 524
in telescope objectives, 402, 404–405

Crystalline materials, 187–188
Cup centering, 555
Curvature:

Coddington’s equations for, 317, 319–320
computations for, 324
in meniscus camera lenses, 399
in paraxial raytracing, 37–38
Petzval (see Petzval curvature)
in thin lenses, 42

Curves in design, 436
Cutoff frequencies, 377–378
Cylinder lenses, 287–289
Cylindrical surfaces, 557
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Dagors, 455, 516
Dall-Kirkham system, 481
Damped least squares, 434
Dark adaptation, 131–132
Data transmission, fiber optics for, 

286–287
Defects, eye, 134–138
Density:

of optical glass, 181
in transmission calculations, 175

Depolarizers, 200
Depth of field, 154
Depth of focus, 154–157, 348
Derotation prisms, 112
Detector optics, 274–281
Deviation:

in centering, 565–566
in prisms, 91–92, 94

Dialyte achromats, 411
Diamond turning, 414, 483, 559
Dichroics, 210
Dielectric reflection, 200–209
Diffraction, 11–16

of apertures, 157–160
of gaussian beams, 163–168

Diffraction efficiency, 413–414
Diffraction grating, 163
Diffraction-limited systems, 376–383, 492
Diffractive surfaces, 296–297, 413

achromatic diffractive singlets, 415–417
apochromatic diffractive doublets, 

417–418
diffraction efficiency in, 413–414
manufacturability of, 414
Sweatt model for, 414–415

Diffuse sources, irradiance from, 223–225
Diffusing materials, 195–198
Dimensions for prisms, 567–568
Diopter adjustments, 445
Diopter gages, 598
Diopters, 24, 125–126
Direct vision prisms, 94–96
Direction cosines, 308–311
Dispersing prisms, 91–92
Dispersion, 175–178

in fiber optics, 287
in prisms, 92
relative, 7

Distances:
eye judgment of, 131
with microscopes, 447, 452
rangefinders for, 271–274

Distortion, 71–72, 76–77, 79
computations for, 324
in Cooke triplets, 421

Distortion (Cont.):
in eyepieces, 440–441
keystone, 56–57
in lens design, 433
manual correction of, 427
measurement of, 586–587
in symmetrical principle, 401

Dogmar anastigmats, 462, 464, 517
Double-Gauss designs:

anastigmats, 456, 459
camera lens, 537
high-index crowns, 534
high-speed lenses, 538
split-rear crowns, 536

Doublet magnifiers, 507
Doublet telescope objectives, 548
Dove prisms, 105–107
Dutch telescopes, 252

Effective clear aperture, 257–258
Effective focal length (efl), 23

calculation of, 39
and optical invariant, 53
in zoom systems, 294

Electromagnetic spectrum, 1–2
Electronic computer design, 431–435
Element shape solutions, 421–422
Ellipsoidal mirrors:

in arc-lamp motion picture projectors, 
472–473

manufacturing, 557
for reflecting systems, 477–484

Emissivity, 235–237
Empty magnification, 258
Endoscopes, 256–257
Enlarger lenses, 464
Entrance pupils, 52, 142, 254
Entrance windows, 143
Equiconcave and equiconvex elements, 436
Equivalent air paths, 257
Equivalent air thickness, 101
Erecting prism systems, 108–111
Erecting telescopes, 252, 254, 445
Erfle eyepieces, 444, 510
Exit pupils, 142

in magnifiers, 444
in optical devices, 257–267
in telescopes, 254, 260

Exit windows, 143
Express lenses, 455
Extended objects, 21
Eye relief, 254–255
Eyelenses:

in microscopes, 269
in telescopes, 252–254
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Eyepieces (see Telescope systems and 
eyepieces)

Eyes, 125–126
defects of, 134–138
in optical design, 257–267
sensitivity of, 131–134
structure of, 126–128
visual acuity of, 128–130

F-numbers, 151–153
F-theta laser scanning lenses, 546
Farsightedness, 135–136
Fasteners, 213–214
Fiber optics, 281–285

for communications, 286–287
gradient, 285–286

Field, aberration variation with, 77–79
Field coverage, 424, 429
Field curvature, 69–71

Coddington’s equations for, 317, 
319–320

computations for, 324
in meniscus camera lenses, 399

Field flatteners, 466–467
Field lenses, 255–257

light pipes for, 280
in radiometers, 278–279

Field of view:
in field lenses, 255
in Galilean telescopes, 263

Field of vision, 128
Field stops, 141, 143
Fifth-order aberrations, 88, 352–354, 

363–365
Filters:

absorption, 192–195
interference, 200–209
photographic density of, 175
spatial, 168
thin-film coatings, 207

First-surface mirrors, 116–117
Fish-eye lenses, 468–469, 514
Fitting operations, 575
Flashed opal, 198
Flat-field microscope objectives, 451–452
Flint glasses, 179, 183

in Cooke triplets, 418
in meniscus anastigmats, 454, 457
in Petzval lenses, 467
in telescope objectives, 402

Float glass, 183
Focal collimators, 581–583
Focal lengths:

in anamorphic systems, 288
in Cassegrain mirror systems, 44–45

Focal lengths (Cont.):
Coddington’s equations for, 318
in compound microscopes, 269
measurement of, 581–584
and optical invariant, 53–54
in reflecting systems, 452, 479
in telescopes, 253
of thin lenses, 42
in two-component systems, 47–48
in zoom systems, 294–296

Focal points, 22
in image formation, 39–42
in telescopes, 252

Focus:
in anamorphic systems, 289, 291
depth of, 154–157, 348
of eyepieces, 445
in optical path difference, 348–349
in zoom systems, 293

Foot-lamberts, 239
Foucault test, 557, 588–592
Fourier transform lenses, 168
Fovea, 127
Fraunhofer form, 405, 434
Frequency, 2
Frequency distribution curves, 570–572
Frequency response in MTF, 369
Fresnel lenses:

plastics for, 191
in rangefinders, 274–275

Fresnel reflection, 200
Fresnel surfaces, 413
Front focal length (ffl), 23, 53
Front focus distance (ffd), 48
Front meniscus camera lenses, 400, 434
Fused fibers, 285
Fused quartz glass, 183, 185

G-sums, 339
Gain of projection screens, 197
Galilean telescopes, 252–253, 255

in anamorphic systems, 287–288
aperture stops in, 262
field of view in, 263

Gamma radiation, 1
Gastroscopes, 284
Gauss form:

in lens design, 434
in telescope objectives, 405

Gaussian beams, diffraction of, 163–168
Gaussian optics, 22
Gelatin filters, 193
General and skew ray computations:

aspheric surfaces, 312–317
spherical surfaces, 308–312
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Generalized design technique, 424
aberration balancing in, 430–431
manual correction in, 426–428
residual reduction in, 429–430
trigonometric correction in, 428–429

Generating process, 550
Geneva lens gages, 598
Geometric image energy distribution, 

360–361
Geometric spot size, 362–366
Geometrical modulation transfer factor, 

496
Germanium IR design, 544
Glare stops, 147–148
Glass fibers, 283–285
Glass filters, 194
Glass molding, 483–484
Glasses (see Optical glass)
Goerz Dagors, 455
Goerz prisms, 111–112
Gradient index fibers, 285–286
Gradient index glasses, 187
Graphical raytracing, 306–307
Gray-bodies, 235
Green optical glass filters, 193
Gregorian telescopic system, 477–480
GRIN rods, 285–286
Grinding, 552–554, 556

Half-field angles in radiometers, 277
Hartmann dispersion equation, 176–177
Heat-absorbing glasses, 194
Height:

for objects at infinity, 52
in raytracing, 38

Hektor anastigmats, 460–461
Heliar anastigmats, 460, 520
Hemispheres, radiation into, 222–223
Herzberger dispersion equation, 176–177
High-power microscope objectives, 

450–451, 530
High-speed processing, 556
Higher-efficiency coating, 205
Higher-order aberrations, 88
Hot mirrors, 210
Huygenian eyepieces, 441
Huygen’s principle, 12, 157–158
Hyperboloids, 477–484
Hyperfocal distance, 156
Hypergon lenses, 401
Hyperopia, 135–136

Illumination:
and apertures, 151–154
of natural sources, 239–240

Illumination (Cont.):
in photometry, 240–242
units for, 239
in visual acuity, 129–131

Illumination devices:
integrating spheres, 247–248
light pipes in, 281
projection condensers, 245–247
searchlights, 243–245
telescope brightness, 247

Image evaluation, 347
geometric spot size, 362–366
image energy distribution, 360–361
modulation transfer function, 366–372

computation of, 372–376
diffraction-limited systems, 376–383

optical path difference, 348–355
point spread functions for, 385–391
radial energy distribution, 383–385
spread functions for, 361–362
tolerances in, 355–360

Image formation, 21–22
cardinal points in, 22–24
focal points and principal points in, 

39–42
light ray refraction in, 30–32
matrix optics in, 54–55
mirrors in, 43–45
optical invariant in, 49–54
paraxial raytracing in, 34–38
paraxial region in, 32–34
position in, 24–26
Scheimpflug condition in, 55–57
separated component systems in, 45–49
sign conventions in, 57–58
size in, 26–30
thin lenses in, 42–43
y-ybar diagrams in, 55

Image height:
objects at infinity, 52
in paraxial raytracing, 38

Images:
evaluating (see Image evaluation)
forming (see Image formation)
illumination of, 151–154
orientation of, in prism systems, 

99–100, 105–107
radiometry of, 225–230

Immersion lenses, 277–280
Immersion objectives, 447, 450–451
Index dispersion, 175–178
Index-slope angle products, 37–38
Indexes:

of eye surfaces, 127
of lenses in paraxial raytracing, 37–38
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Indexes (Cont.):
of prisms, 94
of refraction, 3–4

and dispersion, 178
importance of, 568
for mirrored surfaces, 43
test for, 592

Infinite conjugates, 251–252
Infinity, height for objects at, 52
Infinity f-numbers, 152–153
Infrared region, 1
Infrared transmitting glasses, 186–187
Instrument myopia, 135
Integrating spheres, 200, 247–248
Intensity:

in photometry, 240
in radiometry, 220–221

Intercept length for mirrored surfaces, 44
Interference, 11–16
Interference coatings, 207–208
Interference filters, 200–209
Interferometers, 558
Internal transmittance, 184
Intersection coordinates for skew rays, 

313–314
Inverse Dall-Kirkham system, 481
Inverse square law, 220–221
Inversion prisms, 111–113
Inverting telescopes, 252
IR Cooke triplet, 543
IR telescope, 545
Iris, 126
Irradiance:

from diffuse sources, 223–225
in photometry, 240–242
in radiometry, 220

Iterative technique, 428

Johnson’s law, 376

K-mirrors, 113
Kellner eyepieces, 442
Kepler telescopes, 254–255
Keratoconus, 137
Kettler-Drude dispersion equation, 

176–177
Keystone distortion, 56–57
Kinematic mounts, 575–576
Kinoforms, 296, 413
Knife-edge scans, 596
Knife-edge test, 588–592
Knife-edge traces, 362
Knoop hardness, 181
Koehler projection condensers, 471
Koenig prisms, 110–111

Lagrange invariant, 49–54
Lambertian diffusers, 195–196
Lamberts, 239
Lambert’s law, 221–222
Landolt broken ring test, 128
Laser ablation, 136–137
Laser beam diffraction, 163–168
Laser beam expanders, 255
Laser diodes, 291
Laser disk objectives, 547
Laser rangefinders, 274
LASIK, 136–137
Lateral aberrations, 64–66, 322, 358
Lateral magnification, 26
Law of refraction, 5–8
Laws of probability, 570
Leman prisms, 111–112
Lens bench collimators, 584
Lens benches, 580–581
Lens shape effect on aberrations, 73–77
Lenses:

designs for:
automatic, 432–435
sample, 503–548

mounts for, 577–580
power of, 24
in unknown optics analysis, 598
wave fronts affected by, 8–11

Lenticular screens, 197
Licht-Sprechers, 97
Light pipes, 279–281
Light wave propagation, 2–5, 157–158
Line images, 289–290
Line spread functions, 361–362
Linear aberrations, 79
Linear blur, 154
Linear dimensions in computations, 302
Linear kinoform surfaces, 413
Linear resolution, 163
Liquids, 213–214
Long-pass transmission filters, 207
Longitudinal departure, 71
Longitudinal magnification, 27
Longitudinal spherical aberrations, 

64–66, 322
Lord Rayleigh’s criterion, 161–162
Low-expansion glasses, 185–186
Low-index, broadband Cooke triplets, 

512
Low-index glass, 527
Low-power microscope objectives, 448
Low-reflection coatings, 204–205
Lumens, 219, 237–239
Luminous radiation, 237–243
Lyot stops, 147
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Magnetorheologic polishing, 558
Magnification, 26–27

in anamorphic systems, 287
in microscopes, 269–270
in telescopes, 251, 253–254

Magnifiers, 267–269, 285, 444–445
Maksutov system, 486–491
Mangin mirrors, 487–488, 493–494, 497
Manual aberration correction, 426–428
Marechal criterion, 357, 385, 387
Materials:

in design, 435
in optical manufacture, 549–550
specifications and tolerances for, 

568–569
Matrix optics, 54–55
Measurements:

aberration, 66–67, 585–587
focal length, 581–584
modulation transfer function, 

594–596
telescopic power, 585

Medium-power microscope objectives, 
448–449

Melt fits, 575
Meniscus forms:

camera lens, 395–401
in design, 436
focal points in, 41
inner crown, 529
for photographic objectives, 453–459
in residual aberrations, 429

Meridional rays and planes, 69, 
304–308

Merit function, 432–434
Merte effect, 462
Merte surfaces, 460
Mesopic curve, 134
Micrometers, 2–3
Microns, 2–3
Microscopes and microscope objectives, 

447–448
aplanatic surfaces in, 449–450
autocollimating, 584, 598
compound, 269–271
flat-field, 451–452
high-power, 450–451, 530
low-power, 448
medium-power, 448–449
Rayleigh limit in, 358
reflecting, 452–453
simple, 267–269

Millimicrons, 2–3
Minifiers, 285

Minimum deviation of prisms, 94
Mirrors:

ellipsoidal, 472–473, 477–484, 557
in image formation, 43–45
Mangin, 487–488, 493–494, 497
mounting, 580
plane, 116–117
semireflecting, 210
spherical, 474–476, 493, 497

Modified Amici prisms, 111–112
Modulation transfer function (MTF), 

366–372
with coherent and semi-coherent 

illumination, 380–383
computation of, 372–376
diffraction-limited systems in, 376–383
measurement of, 594–596

Motion, magnification of, 27
Mounting techniques, 575–580
Multilayer coatings, 207–209
Myopia, 134–135

Nanometers, 2–3
Narrow bandpass filters, 207
Natural stop positions, 76
Nearsightedness, 134–135
Negative magnification, 27
Negative outer meniscus elements, 539
Newton’s black spot, 15
Newton’s rings, 14–15
Nicol prisms, 199
Night myopia, 135
Nodal points, 22–23
Nodal slides, 581
Nonbrowning glasses, 183
Nonspherical surfaces, 557–559
Null lenses, 558
Numerical aperture (NA), 152

in fiber optics, 282
in illumination for MTF, 382–383

Objective lenses and systems:
in microscopes, 269, 447–453
photographic (see Photographic

objectives)
in telescopes, 252, 254, 402–413, 

445–447
testing, 594

Offense against sine condition 
(OSC), 323

Oil-immersion microscopes, 450
Old Schott dispersion equation, 176–177
1-diopter prisms, 126
Opal glass, 198, 200
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Opening equations, 302, 304–305, 309, 319
Optic nerve, 127
Optical axes, 22
Optical coatings, 201–209
Optical computations, 301–302

aberration, 321–327
Coddington’s equations, 317–321
general and skew rays:

aspheric surfaces, 312–317
spherical surfaces, 308–312

meridional rays, 304–308
paraxial rays, 302–304

Optical contact method, 214
Optical devices, 251

anamorphic systems, 287–291
compound microscopes, 269–271
diffractive surfaces, 296–297
exit pupils, eyes, and resolution in, 

257–267
fiber optics, 281–287
field lenses and relay systems, 255–257
radiometers and detector optics, 

274–281
rangefinders, 271–274
simple microscopes and magnifiers, 

267–269
telescopes, 251–255
variable-power systems, 291–296

Optical glass, 178–184
in Cooke triplets, 418, 422–424, 511
gradient index, 187
infrared transmitting, 186–187
low-expansion, 185–186
in meniscus anastigmats, 454, 457
in meniscus camera lenses, 395
in Petzval lenses, 467, 524
in telescope objectives, 402, 404–405, 410

Optical invariant, 49–54
Optical laboratory practice:

aberration measurement, 585–587
focal length measurement, 581–584
Foucault test, 588–592
lens benches, 580–581
modulation transfer function 

measurement, 594–596
resolution tests, 592–594
Schlieren test, 592
star test, 587–588
telescopic power measurement, 585
unknown optics analysis, 596–599

Optical manufacture:
blocking, 551–552
centering, 555–556
grinding, 552–554

Optical manufacture (Cont.):
high-speed processing, 556
materials, 549–550
nonspherical surfaces, 557–559
polishing, 554–555
rough shaping, 550–551
single-point diamond turning, 559

Optical mounting techniques, 575–580
Optical path difference (OPD), 15, 79–80

for aberration measurements, 66–67
computations for, 326–327
focus shift in, 348–349
in ray intercept plots, 88–89
RMS, 355–356
spherical aberration in, 349–355

Optical path length, 15
Optical specifications and tolerances, 

559–560
additive, 570–575
centering, 565–567
materials, 568–569
prism dimensions and angles, 567–568
surface accuracy, 560–564
surface quality, 560–561
thickness, 564–565

Optical systems, resolution of, 160–163
Optical systems design, 393–395

achromatic telescope objectives, 
402–413

Cooke triplet anastigmats, 418–424
diffractive surfaces, 413–418
by electronic computer, 431–435
generalized design technique, 

`424–431
practical considerations in, 435–436
simple meniscus camera lens, 

395–401
symmetrical principle in, 401

Optical transfer function (OTF), 372
Orders of aberrations, 83–89
Orientation in prism systems, 99–100, 

105–107
Orthometar lenses, 455
Orthoscopic eyepieces, 442–443
OSC aberration computations, 323
Overcorrected astigmatism, 71
Overcorrected distortion, 72
Overcorrected spherical aberration, 65
Overspecification, 559

Paraboloidal mirrors:
blur size estimation in, 493
manufacturing, 557
in reflecting systems, 476–477
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Paraxial rays:
computations for, 302–304
for mirrored surfaces, 43
through several surfaces, 34–38
in third-order aberrations, 329

Paraxial region, 22, 32–34
Path length in fiber optics, 282
Pattern-generating surfaces, 297
Peak-to-valley (P-V) OPD, 356
Peaking-up characteristics, 572–573
Pechan prisms, 112
Pellicles, 114–115
Penta prisms, 113–114
Pentac anastigmats, 460
Perfect optical systems, 22
Periscopes, 256–257, 401
Petzval curvature, 70–71

in Cooke triplets, 418, 422
in eyepieces, 440
manual correction of, 427
in meniscus camera lens, 395–396, 400

Petzval lenses:
for photographic objectives, 465–467
with split elements, 522, 524

Petzval sum, 420
Petzval surfaces, 71, 423
Phase shifts, 287, 379
Phase transfer function (PTF), 372
Photoelectric effect, 16–17
Photographic density of filters, 175
Photographic depth of focus, 156–157
Photographic objectives, 453

afocal attachments, 470
airspaced anastigmats, 459–464
meniscus anastigmats, 453–459
Petzval lenses, 465–467
reverse telephoto lenses, 468–470
telephoto lenses, 467–468

Photographic triplet lens, 342–345
Photometry, 219–220, 237–243
Photopic curve, 134
Pincushion distortion, 72, 440
Pipes, light, 279–280
Pitch in blocking, 551
Planck’s law, 232–235
Plane mirrors, 116–117
Plane parallel plates, 100–104
Plane surface reflections, 97–100
Plane waves, 2
Plasmat lenses, 455
Plastic cements, 214
Plastic fibers, 283–285
Plastic optical materials, 188–192
Plate glass, 183

Ploessl eyepieces, 443–444, 509
Point spread functions (PSFs), 361–362, 

385–391
Polarizing materials, 197–200, 209
Polishing, 554–556, 558
Porro prisms, 109–110
Portrait lenses, 465
Position in image formation, 24–26
Power:

in anamorphic systems, 287, 289
in Cooke triplet anastigmats, 419–421
in design, 426
of field lenses, 261–262
of lenses, 24
of microscopes, 267–270
radiated into hemispheres, 222–223
of searchlights, 245
in telescopes, 251, 253, 259, 

263–267, 585
of two-component systems, 47

Precision bevels, 436
Precision in computations, 301–302
Presbyopia, 137
Pressing, 549
Primary aberrations, 64

manual correction of, 426–428
point spread functions for, 385–391

Principal planes, 45–46
Principal points, 22, 39–42
Principal rays, 69, 142, 329
Prisms, 91

achromatic and direct vision, 94–96
in anamorphic systems, 287, 290–291
designing, 117–122
dimensions and angles for, 95, 567–568
diopter, 126
dispersing, 91–92
erecting systems for, 108–111
in eyepieces, 440
inversion, 111–113
minimum deviation of, 94
mounting, 580
Penta, 113–114
plane parallel plates in, 100–104
polarizing, 199
in rangefinders, 272–273
reflection from plane surfaces in, 97–100
rhomboids and beam splitters, 114–116
right-angle, 104–107
roof, 107–108
thin, 92–94
total internal reflection in, 96–97
wave fronts affected by, 8–11

PRK technique, 136
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Projection condensers, 245–247, 
470–471

Projection screens, 195–198
Projection TV objectives, 542
Protars, 454
Protected glasses, 183
Pulfrich refractometers, 598
Pupils:

and aperture stop, 142–143
eye, 126
in magnifiers, 444
in optical devices, 257–267
in telescopes, 254, 260
zones of, 588–589

Purkinje shift, 134
Purple optical glass filters, 194

R-Biotars, 525
Radial energy distribution, 383–385
Radial gradients, 187
Radial keratotomy, 136
Radial test targets, 593
Radiant intensity, 240
Radiation:

blackbody, 231–237
glasses for, 183
into hemispheres, 222–223
reducing, 148–150

Radiometers, 274–281
Radiometry and radiance, 219–220

blackbody radiation, 231–237
conservation of, 225–230
and diffuse sources, 223–225
and hemispheres, 222–223
of images, 225–230
inverse square law for, 220–221
and Lambert’s law, 221–222
spectral, 230–231

Radius in unknown optics 
analysis, 597

Ramsden eyepieces, 441–442
Rangefinders, 271–274
Rapid estimation of blur size, 491–496
Rare earth glasses, 179, 183, 423
Ray heights in raytracing, 37–38
Ray refraction at single surface, 30–32
Ray slope-index product, 319
Rayleigh limit (RL), 355–357
Rayleigh’s criterion, 161–162
Rays, 4

intercept curves for, 65, 83–89
through lenses, 10
meridional, 69, 304–308
paraxial (see Paraxial rays)

Raytracing:
in aberration measurements, 585
computer effects on, 394
graphical, 306–307
in optical computations, 302
through several surfaces, 34–38
for spot diagrams, 360–361

Real angular field of view, 253
Real images, 10
Rear meniscus camera lens, 400, 434
Rear projection screens, 198
Reciprocal relative dispersion, 93–94, 178
Red optical glass filters, 194
Reduction of residual aberrations, 429–430
Reflectance levels of natural sources, 

239–240
Reflecting microscope objectives, 452–453
Reflecting systems, 474

Bouwers system, 488–491
conic sections through origins in, 

484–485
ellipsoid and hyperboloid, 477–484
Mangin mirrors, 487–488
paraboloidal reflectors in, 476–477
Schmidt system, 485–487
spherical mirrors in, 474–476

Reflection, 173–175
dielectric, 200–209
in fiber optics, 282
with immersion lenses, 278
in prisms, 96–100

Reflectors, 117–122, 209–211
Refracting prisms, 290–291
Refraction:

equations for, 302, 305, 309
law of, 5–8
at single surface, 30–32
for skew rays, 315–317

Regions of solution, 427–428
Reinforced waves, 14
Relative apertures, 152
Relative dispersion, 7, 178
Relay systems, 256–257
Replication, plastics for, 191
Residual aberrations, 80–83, 429–430, 462
Resistance of optical glass, 181
Resolution:

of compound microscopes, 270–271
in diffraction-limited systems, 379
of eyes, 258
in fiber optics, 283
in modulation transfer function, 

367–368, 376
in optical devices, 257–267
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Resolution (Cont.):
of optical systems, 160–163
tests for, 592–594

Reticles, 211–213
Retina, 127–128
Retrofocus lenses, 468–470, 513
Reverse telephoto lenses, 468–470, 513
Reversed Tessars, 519
Rhomboid prisms, 114–116
Right-angle prisms, 104–107
Ritchey-Chretien objective, 479–480
RMS (root-mean square) OPD, 355–356
Rod-lens endoscopes, 257
Rods, 127–128
Ronchi grating tests, 557
Roof prisms, 107–108, 112
Rough shaping, 550–551

Sagittal coma, 69, 103, 323
Sagittal curvature of field, 317
Sagittal height, 16
Scaling of aberrations, 79
Scheimpflug condition, 55–57
Schlieren test, 592
Schmidt cameras, 333
Schmidt prisms, 111–112
Schmidt systems:

blur size estimation in, 493, 498
Cassegrains, 487
in reflecting systems, 485–487

Schwarzchild configuration, 452
Scotopic curve, 134
Scratch and dig specifications, 436
Searchlights, 243–247
Second-surface mirrors, 116–117
Secondary spectrum (SS), 82

in achromatic telescope objectives, 
409–410

in diffractive surface design, 416
Seidel aberrations, 62–72
Seidel coefficients, 331
SELFOC rods, 285
Sellmeier dispersion equation, 176–177
Semi-coherent illumination, MTF with, 

380–383
Semireflecting mirrors, 210
Sensitivity of eyes, 131–134
Separated component systems, 45–49
Seventh-order aberrations, 88
Sheet polarizers, 199
Short-pass transmission filters, 207
Sigmoidoscopes, 284
Sign conventions, 25, 30–31, 57–58

for mirrored surfaces, 43
for telescopes, 253

Simple lenses:
blur size estimation in, 494
meniscus camera, 395–401
wave fronts affected by, 8–11

Simple microscopes, 267–269
Simultaneous design techniques, 432
Sine wave response, 369
Sine-wave targets in MTF, 375–376
Single-lens elements, blur size estimation 

in, 499
Single-lens reflex (SLR) cameras, 274
Single-material catadioptric systems, 533
Single-point diamond turning, 414, 

483, 559
Single refracting elements, blur size 

estimation in, 498
Single surface, ray refraction at, 30–32
Singlet correctors, 531
Size in image formation, 26–30
Skew rays, 69

aspheric surface computations, 312–317
spherical surface computations, 308–312

Slits in MTF tests, 594–596
Slope angles in paraxial raytracing, 38
Snell’s law of refraction, 5–8
Sonnar anastigmats, 456, 528
Spacing:

in Cooke triplet anastigmats, 419–421
in design, 426
in microscope objectives, 452
in telescopes, 263–265
in unknown optics analysis, 597

Sparrow’s criterion, 160
Spatial filtering, 168
Special glasses:

gradient index, 187
infrared transmitting, 186–187
low-expansion, 185–186

Spectral radiometry, 230–231
Speed of systems, 152
Spheres, integrating, 247–248
Spherical aberration, 64–67

in anastigmats, 424, 458, 461
in blur, 364–365, 492
computations for, 322
in condenser systems, 472
in Cooke triplets, 421–422
in diffraction-limited systems, 379–381
in diffractive surface design, 416
in eyepieces, 440
fifth-order, 352–354
geometric spot size due to, 362–366
and lens shape, 75
manual correction of, 427
in meniscus camera lens, 395, 399
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Spherical aberration (Cont.):
in optical path difference, 349–355
in Petzval lenses, 467
in plane parallel plates, 103
in point spread functions, 386–387, 

390–391
Rayleigh limit in, 358
in reflecting systems, 474–476, 

479–480
in telescope objectives, 402, 405–409
third-order, 335, 351–352
wave aberration polynomial for, 

354–355
Spherical gradients, 187
Spherical mirrors, 474–476, 493, 497
Spherical reflectors, 473
Spherical surfaces, general and skew rays

on, 308–312
Spherical test plates, 561
Spherochromatism, 82

computations for, 325
in diffractive surface design, 416
in residual aberrations, 429
in telescope objectives, 406–409

Spherometers, 597
Spike filters, 207
Spinning shoulders, 578
Split elements, 462–463
Split-front triplets, 526, 529
Split-image rangefinders, 274
Split-rear crown double Gauss, 536
Spot diagrams, 360–361
Spot size due to spherical aberration, 

362–366
Spread functions, 361–362
Spreading of gaussian beams, 165–166
Sprenger prisms, 112
Spurious resolution, 379
Square-wave targets in MTF, 375–376
Star test, 587–588
Statistical combination, 570
Stefan-Boltzmann law, 232, 235
Steinheil form, 405
Steradians, 220
Stereo vision, 131
Stokes lenses, 289
Stop shift equations, 335–345
Stops (see Apertures)
Stray radiation, 148–150
Strehl definition, 368
Strehl ratio, 356–359, 385
Styrene plastic, 191
Subtended angles, 251, 253, 268
Superachromat lenses, 411
Surface curvature in eye, 127

Surfaces:
diffractive, 296–297
specifications and tolerances for, 

560–564
in third-order aberration computations, 

328–335
Surveying instruments, 258, 446
Sweatt model, 414–415
Symmetrical eyepieces, 443–444, 509
Symmetrical principle, 401
Synthesis of optical systems (see Optical

systems design)
Systems of separated components, 45–49

T-stops, 153
Tangential coma, 69, 322–323, 358, 417
Tangential curvature of field, 317
Tangential images, 69
Tangential rays and planes, 69
Targets in MTF, 366–367, 375–376
Telecentric stops, 150–151
Telephoto lenses, 467–468, 515
Telephoto ratio, 467
Telescope systems and eyepieces, 251–255, 

439–441, 508
brightness in, 247
diopter adjustment of, 445
erector systems, 445
Erfle eyepieces, 444
Huygenian eyepieces, 441
Kellner eyepieces, 442
magnification, 52
magnifiers, 444–445
objective systems in, 252, 254, 402–413,

445–447
orthoscopic eyepieces, 442–443
power measurements, 251, 253, 259, 

263–267, 585
Ramsden eyepieces, 441–442
Rayleigh limit in, 358
symmetrical eyepieces, 443–444

Temperature:
in blackbody radiation, 232, 234
and telescope objectives, 412

Terrestrial telescopes, 252
Tessar anastigmats, 459, 518
Test plates, 561, 574
Theodolites, 446
Thick lenses:

in Cooke triplets, 422
in design, 435–436

Thickness, 564–565
apparent, 29
of filters, 194
magnification of, 27
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Thickness (Cont.):
in paraxial raytracing, 37–38
in unknown optics analysis, 597

Thickness fits, 575
Thin elements, 435
Thin-edged elements, 435
Thin-film computations, 205–209
Thin lenses:

aberration expressions, 428
blur size estimation in, 494, 500
in image formation, 42–43
stop shift equations, 335–345
for telescope objectives, 402–404

Thin prisms, 92–94
Third-order aberrations, 64, 88, 351–352

in Cooke triplets, 422
in diffraction-limited systems, 379–381
in geometric spot size, 362–363
in meniscus camera lenses, 396–398
Rayleigh limit in, 358
in reflecting systems, 479–480
in residual aberrations, 429
surface contribution in, 328–335
thin lenses, 335–345

Third-order theory, 88
35-mm camera objectives, 535
Three-dimensional vision, 131
Three-hole masks, 585–586
Topogon lens, 454
Toroids, 557
Total curvature of thin lenses, 42
Total emissivity, 235–236
Total internal reflection (TIR), 96–97, 

283–284
Transfer equations, 302–303, 305, 309, 311
Transformation temperature in glass, 181
Transmission:

calculations for, 174–175
in radiance of images, 226

Transmitting diffusers, 197–198
Transverse aberrations, 64–66, 322, 358
Transverse magnification, 26
Triangulation rangefinders, 271
Trigonometric correction, 428–429
Trigonometric functions, 301–302
Triplet achromats, 410
Triplets:

with aspheric field correctors, 541
Cooke (see Cooke triplet anastigmats)

Truncation, beam, 166
Tunnel diagrams, 105
Twisting in lens mounting, 579
Two-component systems, 47–49

Ultraviolet region, 2
Undercorrected astigmatism, 70
Undercorrected spherical aberrations, 65
Underspecification, 559–560
Unfolding prisms, 104–105
Unknown optics analysis, 596–599
USAF1951 resolution test target, 593

V-number, 94, 178–179, 183
Variable-power systems, 291–296
Velocity of propagation, 3
Vernier acuity, 131
Vertex length, 424, 456
Viewer lenses, 444–445
Vignetting, 143–147
Virtual images, 10
Visible spectrum, 1
Visual acuity, 128–130
Visual centering, 555
Visual resolution of microscopes, 270–271
Vitreous humor, 126

Waists, 165–168
Warping in lens mounting, 579
Watts, 219
Wave aberration polynomial, 354–355
Wave fronts:

aberration, 79–80, 88–89, 326–327
simple lens and prism affects on, 8–11

Wavelength, 1–3
in blackbody radiation, 232–234
and dispersion, 176
and emissivity, 236
and eye sensitivity, 133–134
in fiber optics, 287
in radiometry, 219

Wide-angle design, 539
Wide-angle lenses, 154
Wide-angle photography, 455
Widely airspaced doublets, 411
Wien’s displacement law, 232, 235
Wind-tunnel applications, 592
Window glass, 183
Wood lenses, 286
Working f-numbers, 152
Wratten filters, 193

Y-ybar diagrams, 55
Ynu raytraces, 34
Young’s experiment, 12–13, 15

Zeiss Protars, 454
Zero-power meniscus elements, 429
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Zonal aberrations, 81
in anastigmats, 424
computations for, 322
in diffractive surface design, 416
with point spread functions, 390
Rayleigh limit in, 358

Zonal aberrations (Cont.):
in residual aberrations, 429
in telescope objectives, 

407–409
Zones of pupils, 588–589
Zoom systems, 291–296
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