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Abstract

Round colliding beams option in VEPP-2000 [1] puts a
number of strict requirements on the collider lattice. The
orbit Response Matrix (ORM) technique is a versatile tool
for lattice analysis and correction. For linear optical func-
tion study and correction, the orbit response to the dipole
correctors is collected and processed, while for the orbit
correction the quadrupole trimming is used. Theoretical
and experimental responses of closed orbit to the same per-
turbations are compared to determine the most probable de-
viations of chosen parameters from its design values.

ORBIT CORRECTION

Introduction

Commonly, the perfect unperturbed orbit passes all mag-
net multipoles through their magnetic centers, so it is use-
ful to know offsets of the real orbit. There are no cali-
brated absolute beam position monitors at VEPP-2000, so
to determine offsets of closed orbit the method is used that
allows to measure orbit displacement in lenses using rel-
atively small number of beam position monitors, that can
precisely measure orbit shifts.

The method is based on the fact that in case of displaced
crossing of multipole magnet variation of the multipole
field will change the closed orbit, because of additional
dipole field that appears on the particles way.

Orbit Offset Measurement

It easy to show that only the qudrupole has different field
in different points. Dipole has uniform field in all space,
and 2n-pole has identical field on the same radii in points
that have Δθ = 2πm/(n− 1) difference in polar angel.

If a particle has an offset in the quadrupole lens δ�l =
(δx, δy), then changing of gradient in this lens by δG will
shift the closed orbit the same way as a dipole corrector
with field δ �H = (δxδG, δyδG).

So by changing gradients in the lenses one by one and
measuring the orbit shifts on BPMs one can construct the
response vectors δ �Xexp,i.

If the structure of accelerator is known then respective
theoretical response vectors δ �Xmod,i for dipole correctors
in tested lenses can be calculated. To find absolute shifts
�Xerr,i of lenses relative to the ideal closed orbit, one should
minimize the functional:

F (λi) = ( �Xmod,inλi − �Xexp,in)2 → min (1)

Here �Xmod,in and �Xexp,in are measured and modeled re-
sponse vectors normalized by the measurement precision
σin

�Xmod,in =
{

δxmod,i1
σi1

, . . . ,
δxmod,iN

σiN

}

�Xexp,in =
{

δxexp,i1
σi1

, . . . ,
δxexp,iN

σiN

} (2)

The functional (1) has a minimum if:

λmin,i =
( �Xmod,i · �Xexp,i)

�X 2
mod,i

(3)

Now the absolute coordinates of the beam in the lenses can
be obtained from the following formulas:

δxerr,i =
δHy,iλmin,i

δGi
, δyerr,i =

δHx,iλmin,i

δGi
(4)

Accuracy

To measure the accuracy of obtained displacements one
can use functional (1). If the minimal value of this func-
tional is Fmin,i = F (λmin,i) = ( �X 2

exp,i−( �Xmod,i · �Xexp,i)),
then let the accuracy δλi of λmin,i be defined by condition
F (λmin,i ± δλi) = 2Fmin,i. Then:

δλi =
�X 2
exp,i − ( �Xmod,i · �Xexp,i)

�X 2
mod,i

(5)

Errors in determined orbit can be obtained by combining
(4) and (5).

Orbit Correction

To correct obtained displacements of the closed orbit one
should calculate the response matrix M that contains re-
sponses of the closed orbit in lenses for each corrector.
Here is a tricky place of this method, because there is no
”coordinate” of the closed orbit in a thick lens. One way
to solve this problem is to use coordinate in the lens’ cen-
ter, but a more convenient method is to use ”virtual” BPMs
placed in centers of lenses that measure coordinate aver-
aged across lens’ length.

Next equation contains the necessary correctors’
strengths δ�Icorr:

�Xerr = Mδ�Icorr (6)

Commonly, matrix M is not square so to get the best set
of correctors values, SVD inversion technique is used. The
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SVD technique allows controlling of the correction preci-
sion by choosing the number of truncated singular values:

δ�Icorr = (M)−1
SV D

�Xerr (7)

Uncertainties in the theoretical model cause the errors in
correction of the orbit, so several iterations are commonly
needed to get the corrected orbit.

Orbit Correction Results

Figure 1 shows improvement of the closed orbit position
relative to the magnet centers of quadrupoles.
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Figure 1: Example of orbit correction.

In some cases of large physical displacement of a cer-
tain lens the orbit can not be corrected only by described
method, and repositioning of the identified source of prob-
lems must be performed.

LATTICE CORRECTION

Introduction

One of the main problems during commissioning and
running of circular accelerator is determining and elimi-
nation of errors of optical parameters in the real lattice. To
correct the lattice of VEPP-2000 the program was written
that implements algorithms discussed in [2, 3, 4, 5]. The
main idea of the correction method is to minimize χ2, by
varying a set of parameters:

χ2 =
∑

i,j

(Mmod,ij −Mmes,ij)2

σ2
ij

=
∑

i,j

V 2
k(i,j) (8)

where Mexp,ij and Mmod,ij – experimental and theoretical
closed orbit responses on variation of j-th corrector at i-th
BPM; σij – precision of corresponding measurement.

The main feature of written code is usage of 6-
d formalism for calculation of theoretical responses on
dipole correctors. In this formalism vector Xt =
(x, px/p0, y, py/p0, cΔt,Δp/p0) is used for particle dis-
placements and momenta.

6-D ipole orrector

To calculate the closed orbit response for a dipole correc-
tor, let’s consider lattice element A with a steering magnet.
If the coordinate of particle at the entrance point is Xin,
then at the exit point it can be written as:

Xout =MAXin + δ, δt =(δx, δx′, δy, δy′, δL, 0) (9)

were δ describes the steering effect from the corrector;
δL is the path elongation in element A for the particle
with Xin = 0. Hence, using one turn matrix Mturn,
Det(I −Mturn) �= 0, one can easily calculate the closed
orbit parameters at the exit point of element A:

XexitA = (I −Mturn)−1δ (10)

Since the fifth component of X reflects particle’s retard-
ing, then the condition of synchronism with RF accelerat-
ing field is automatically satisfied.

As was mentioned above the formula (10) works if
Det(I−Mturn) �= 0, but even if there is no RF accelerator
cavity in the structure, Eq. (9) gives some usefull informa-
tion, for example ΔE, the energy shift of the synchronous
particle caused by steering dipole.

Let’s consider a short dipole corrector (that, according
to (9) can describe a long one) in a lattice with no coupling
between transverse degrees of freedom (fig. 2). In further
discussion notations will be used: β, α, γ are the Twiss pa-
rameters; η is the periodic dispersion; M is one turn matrix;
V is the coordinate vector of the perturbed closed orbit; δ
is the vector that describes steering magnet; Mβ , Vβ , δβ

are mentioned values presented in the betatron frame; Tβ is
the transformation matrix between common and betatron
frames.

O
s = 0

M

Fs = 

Figure 2: Structure with corrector

Mβ =
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Mxβ
0 0
0 0

0 0
0 0

1 −αΠ
0 1

⎞
⎟⎟⎠ (11)
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Mxβ =
(

cos φ + α sin φ β sinφ
−γ sin φ cos φ− α sinφ

)
(12)

Tβ =

⎛
⎜⎜⎝

1 0 0 η
0 1 0 η′

−η′ η 1 0
0 0 0 1

⎞
⎟⎟⎠ (13)

V (s) =

⎛
⎜⎜⎝

x(s)
x(s)′

ΔL(s)
Δε

⎞
⎟⎟⎠ , Vβ(s) =

⎛
⎜⎜⎝

xβ(s)
xβ(s)′

ΔLβ(s)
Δε

⎞
⎟⎟⎠ (14)

δ =

⎛
⎜⎜⎝

δx
δx′

δL
0

⎞
⎟⎟⎠ , δβ =

⎛
⎜⎜⎝

δxβ

δx′β
δLβ

0

⎞
⎟⎟⎠ (15)

Transformation between the common and betatron
frames can be performed using next rules:

M = TβMβT−1
β , V = TβVβ , δ = Tβδβ (16)

In particular, relations of δL and δLβ can be obtained:

δLβ = δL + δxη′(0)− δx′η(0) (17)

Third line of the Vβ periodicity condition MβVβ(0) +
δβ = Vβ(0) leads to:

ΔLβ(0)− αΠΔε + δLβ = ΔLβ(0) ⇒
δε = δLβ

αΠ = δL+δxη′(0)−δx′η(0)
αΠ

(18)

For a short corrector δx = 0, δL = 0 this comes to the well
known formula, see e.g. in [3]

Incomplete rank of (9) in the considered case leads to
uncertainties in determining of ΔL. It is obvious that in
absence of RF acceleration cavity this value can be arbi-
trary. Let for uniqueness put this value to zero on exit from
the corrector. It is easy to show periodicity of Vβ by track-
ing it through one turn, for example starting from exit point
of the corrector:

MβVβ(0) + δ = (19)

(xβ(F ), x′β(F ),−αΠΔε,Δε)t + δβ = Vβ(0)

Results

During commissioning of VEPP-2000 permanent at-
tempts were performed to apply the program for improve-
ment of lattice. Difficult way of eliminating of all ”bugs”
in the code and understanding of some ”tricky” moments
of method precedes the success. Figure 3 shows the disper-
sion measured before and after applying of calculated cor-
rections for quadrupoles’ gradients and solenoids’ fields.

Figure 4 shows the beta-functions and dispersion ob-
tained from the experimental response matrix. The asym-
metry of about 10% can be easily controlled in operation
using a few sets of correctors basing on shape and behavior
of the beam. Improvements done in the lattice of VEPP-
2000 resulted in high peak luminosity obtained in the round
beam mode.

0 500 1000 1500 2000 2500

0

20

40

60

80

100

D
, c

m

S, cm

 Dx, start  Dy, start  Dx, final  Dy, final  Dx, ideal

Figure 3: Example of dispersion correction.
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Figure 4: Beta-functions and dispersion obtained from ex-
perimental response matrix.
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